
PERSONAL COMPUTER

UCSD p-System
Operating System User Guide

olivetti

PEF`SON^L COMPUTER

UCSD p-System
Guide to the use on M20

olivetti

PREFACE

This manual describes the UCSD p-System running on the Olivetti M20 pe'
sonal computer. 1t covers the operational aspects of UCSD p-System th,.
are not detailed in the maniial UCSD p-System Operating Systeiii llser 6uide
The facilities, not usually available with UCSD, but provided with t;
M20 version, are described in detail. A11 the M20's national keybca-
versions are also listed, with associated character codes.

REFERENCES :

UCSD p-System Operating System User Guide Code: 3986630 L

UCSD p-System Program Oevelopment User Guide Code: 3986640 M

M20 Guide to lnstallation and ODerations Code: 3986200 M

M201/0 with External Peripherals User Guide Code: 3982300 N

0lsTRIBUTI0N: General (6)

FIRST EDITloN: January 1984

RELEASE: p-System lv

UPDATIN6: May 1984

p-System is a registered trademark
of Softech Microsystems lnc.

UCS0 and UCSD Pascal are
trademarks of the Reqents
of the University of Caltfornia

Copyright © 1984, by Olivetti
All rights reserved

PUBLICATI0N ISSUED BY:

ING. C. 011VETT1 & C„ S.P.A..
Direzione Oocuiientazione
77, Via Jervis-100151VREA (1taly)

Title: UCSD p-System Guide to the Use on M20

Newsletter code: 398639i M

Date: 3o/o5/84

Publication Code: 3986390 L

Previous Newsletlers: None

This Newsletter provides updated pages for the subject publication.

The last level completed on the attached form, Updating Status, indicates the pages
to be added, removed, or replaced, the number of pages included, and the Newsletter
Code. Pages marked with an asterisk should be removed from the publication. The fom
should be filed at the back of the publication as a permanent record of amended pages.

Each amended page is identif ied by the Newsletter Code shown above.
Amended pages remain valid unless otherwise noted in a subsequent Newsletter.
Modifications to text, figures, or tables are indicated by a vertical bar in the outside
margin next to the change.

Summary of Amendments:

Addition ot Appendix 8 with consequent update of contents.
Appendix 8 gives all the national keyboards and the codes
they produce.

lng. C. 0livetti & C„ S.p.A. - Direzione Documentazione - Via Jervis 77, - 10015 lvREA UO) ltaly

Copyrigt`t : 1984, by Olivetti . All .igh`s reserved

olivetti

UPDATING STATUS

LEVEL
l DATE

UPDATED PAGES PAGES CODE

0
1

26 3986390 L

1
lD,ffi,"

Preface, iv, 8., Contents, 8-1 -8-28 32 3986391 M

i 1(

©

41

5
1

©

=

©

©

Pages marked * must be suppressecl

CONTENTS

PAGE

1-1 1. OVERVIEW

1 -1 1NTRODUCTION

1 -1 HARDWARE REQUIREMENTS

1 -1 HARDWARE CONF16URAT10NS

1-2 B00TIN6 UCSD

1-2 PRIMARY B00T

1 -2 SECONDARY B00T

1-2 CONTENTS 0F THE UCSD SYSTEM l)1SKETTE

1 -4 0THER UCSD DISKETTES

1-5 THE QUICKSTART DOCUMENT

2-1 2. KEYB0ARD CONSIDERATI0NS

2-1 INTRODUCT10N

2-1 NOTES 0N TABLE 2-1

3-1 3. UCSD UTILITY PROGRAMS FOR THE M20

3-1 INTRODUCT10N

3-1 Tl+E CONF16URE UTILITY

3-2 P(RINTER OPTI0N

3-9 REMOTE OPTION

3-11 THE DISKFORMAT UTILITY

4-1 4. SPECIAL PROCEDURES FOR UCSD 0N THE M20

4-1 INTRODUCT10N

4-1 MEMORY EXPANSI0N PROCEl)URE

PA6E

4-1 TURTLEGRAPHICS INSTALLATloN PROCEDURE

A-1 A. HARD DISK AND DISKETTE CHARACTERISTICS

A-1 THE HARD DISK UNIT

A-1 CHARACTERISTICS

A-2 DISKETTES

A-2 CHARACTERISTICS

B-1 8. NATIONAL KEYB0ARI)S LAYOUTS AND CODES

8-1 NATloNAL KEYB0ARDS IAYOUTS AN0 C0t}ES

8-3 DENMARK KEYB0ARD

8-5 FRANCE KEYB0AR0

8-7 6ERMANY KEYB0AR0

8-9 GREAT BRITAIN KEYB0ARD

8-11 ITALY KEYB0AR0

8-13 NORWAY KEYB0ARD

8-15 PORTUGAL KEYB0ARD

8-17 SPAIN KEYB0ARD

8-19 SWEDEN/FINLANO KEYB0ARD

8-21 SWITZERLAND FRENCH KEYB0ARD

8-23 SWITZERLAND GERMAN KEYB0ARD

8-25 USA ASCII KEYB0ARD

8-27 YUGOSLAVIA KEYB0ARD

UCSD p-System Guide to the Use on M20

8. NATIONAL KEYBOARDS LAYOUTS
AND CODES

ABOUT THIS APPENDIX

Here we list all the national keyboard revisions and the codes they

produce .

CONTENTS

8. NATI0NAL KEYB0ARDS

LAYOUTS AND CODES

DENMARK KEYB0ARD

FPANCE KEYBl)Ah(U

GERMANY KEYB0ARD

GREAT BRITAIN KEYBOARD 8-9

1TALY KEYB0ARD 8-11

NORWAY KEYB0AR0 8-13

PORTUGAL KEYB0ARD 8-15

SPAIN KEYB0ARD 8-17

SWEDEN/FINLAND KEYB0ARD 8-19

SWITZERLAND FRENCH KEYB0ARD B-2.i

SWITZERLAND GERMAN KEYB0ARD 8-23

USA ASC11 KEYB0ARD

YUGOSLAVIA KEYB0ARD

NATIONAL KEYB0ARDS LAYOUTS AND CODES

NATIONAL KEYB0ARDS LAYOUTS AND CODES

Each of the national keyboards is described by a figure that illustrates
the keyboard layout, and a table that relates the key or key combination
struck to the code generated. That is, the table shows the 16 bit code
(in hexadecimal) generated for each key whether struck on its own, or in
conjunction with the <SHIFT>, <CTRl>, or <COMMANO> key.

The f irst eight bits (first two hexadecimal digits) are returned in the
AH register. The second eight bits (the third and fourth hexadecimal
digits) contain the AScll code and are returned in the AL register.

The keyboards are each toured in the same physical sequence, in ascending
order of raw key codes of the key struck on its own. The raw key code is
the code that is immediately generated when a key or key combination is
struck before it is translated by system tables. That is, it depends
entirely on the physical position of the key. The raw key codes are shown
in the following figure.

@@00@00000000Cjo@00
800@0000@00@00 @0@0
00000000@000@000000000000@

Key struck
w'th

0`
` £:tYhs"uck

E

000@0000

Fig. 8-1 Raw Keycodes

8-1

Reßark

The shift-lock and cursor-1ock functions are enabled by the bottom
right-hand key (<?/> on the USA AScl[keyboard) struck in conjunction
with the <COMMAND> or <CTRL> key respectively. Where:

shift-1ock infers that all alpha keys on the alphanumeric keypad
subsequently take on shifted values. That is, an alpha
key struck on its own will generate an upper case charac-
ter. Moreover, an alpha key struck in conjunction with
the <SHIFT> key will generate a lower case character. The
shift-1ock is disabled by re-entering <COMMAND> <?/>

cursor-1ock

8-2

infers that all keys on the numeric keypad subsequently
take on shifted values. That is, if such a key is struck
on its own it will generate the code normally associated
with pressing the same key in conjunction with the
<SHIFT> key. Moreover, if such a key is pressed in conj-
unction with the shift key, it will generate the
unshifted value. The cursor lock is disabled by
re-entering <CTRL> <?/>.

UCS0 p-System Cuide to the Use on M20

NATIONAL KEYB0ARDS LAYOUTS AND CODES

DENMARK KEYB0ARl)

®0000®®000000Cjoooo
BO®000000®000Cj o©®0
oTjooooooooooooc%OoOoOoooqH 00000000

Fig. 8-2 Denmark Keyboard

Alphaniioeric Section

RAW KEYTOP ALONE with with with
KEYC00E SHIFT CTRL CO"ANO

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08] 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 3D4C 6DOC 2600
OE m OE6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

8_3

Niliieric Section

FtAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL CoMMArlD

C4
0

5200 D800 772E 5200
C5 5300 0900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 DB00 5E31 4F00
C8 2 1142 DCOO 5F32 1142

C9 3 5100 DD00 6033 5100
CA 4 1144 DE00 6134 1144

CB 5 4700 OF00 6235 4700
CC 6 1143 E000 6336 1143

CD 7 4700 EIOO 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 742D E52D 782D 742D
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

8-4 UCSD p-System 6uide to the Use on M20

NAT10NAL KEYB0ARDS LAYOUTS AND CODES

FRANCE KEYB0ARD

CI0000
.,

000©@0
oOoOooqo

1` `_ _

0©00
00®0

Fig. 8-3 France Keyboard

Alphanu-eric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRl COMMAND

00 RESET 0018 3000 trapped trapped
01 < ` 013C

313E 617F 7F00
02 q 0271 3251 6211 1000
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 q 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08) 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 3D4C 6DOC 2600
OE OE2C 3E3F 6EOD 6COO

OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 a 1261 4241 7201 1E00
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 Z 187A 485A 781A 2C00

8-5

Nimeric Section

RAW KEYTOP ALONE with with with
KEYC00E SHIFT CTRL COMMAND

C4
0

5200 0800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 DB00 5E31 4F00
C8 2 1142 DC00 SF32 1142

C9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144

CB 5 4700 DFOO 6235 4700
CC 6 1143 E000 6336 1143

CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E300 ' 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 742D E52D 7820 742D
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

8_6 UCSD p-System Guide to the Use on M20

NAT10NAL KEYB0AROS LAYOUTS AND CODES

6ERMANY KEYBOARD

®0000®@000000CJO®00
®000000000000C=\@®00
cj°ö°o°o°o°o°o°o°o°o°o°o°cFfl8888iiiiiiiiii-IEi

Fig. 8-4 Germany Keyboard

Alphanui.eric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00

02 a 0261 3241 6201 1E00

03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200

07 f 0766 3746 6706 2100

08 9 0867 3847 6807 2200
09 h 0968 3948 6909 2300
OA 1 OA69 3A49 6AO9 1700

08 J 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 3D4C 600C 2600

OE m OE6D 3E4D 6EOD 3200

OF n OF6E 3F4E 6FOE 3100

10 0 106F 404F 700F 1800

11 P 1170 4150 7110 1900

12 q 1271 4251 7211 1000

13 r 1372 4352 7312 1300

14 S 1473 4453 7413 1F00

15 t 1574 4554 7514 1400

16 u 1675 4655 7615 1600

17 V 1776 4756 7716 2FOO

18 W 1877 4857 7817 1100

8_7

Nmeric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMANO

C4
0

5200 0800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4FOO DB00 5E31 4FOO
C8 2 1142 DC00 5F32 1142
C9 3 5100 D000 6033 5100
CA 4 1144 DE00 6134 1144
CB 5 4700 DF00 6235 4700
CC 6 1143 E000 6336 1143
CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E300 6639 4900
00 + 7328 E42B 7C2B 7328
D1 - 742D E520 782D 742D
D2 * 752A E62A 7A2A 752A
03 / 762F E72F 792F 762F

8-8 UCSD p-System 6uide to the Use on M20

NAT10NAL KEYBOAROS LAYOUTS AND CODES

6REAT BRITAIN KEYB0ARD

@0000©0000000Cjoooo
®®®@®e®eo®B00Cj o©@0

.__

08@®®®e®®®00
CHlfJO®®e®®®®OCJ00

00000000

Fig. 8-5 Great Britain Keyboard

Alphanimeric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 \ 015C 317C 617F 7FOO

02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08 J 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 3D4C 6DOC 2600
OE m OE6D 3E40 6EOD 3200
oF1n OF6E 3F4E 6FOE 3100
o)o 106F 404F 700F 1800
11'p 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

8-9

>

Nuiieric Section

RAW KEYTOP ALONE with with with
KEYcoDE SHIFT CTRL COMMAND

C4
0

5200 0800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 0800 5E31 4F00
C8 2 1142 DC00 5F32 1142

C9 3 5100 DD00 6033 5100

CA 4 1144 DE00 6134 1144

CB 5 4700 DF00 6235 4700
CC 6 1143 E000 6336 1143

CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 742D E52D 782D 742D
D2 * 752A E62A 7 A.2 ^ 752A
D3 / 762F E72F 792F 762F

8-10 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

1TMY KEYB0ARD

®000000000000Cjoooo
B©0000000CD00CDCE@©@0
®%OoOoOoOoOoOoOoOoc%Ooooqo8888

Fig. 8-6 Italy Keyboard

AlphanuiDeric Section

RAW KEYTOP ALONE with with with
K€YCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00

03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08] 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 304C 6DOC 2600
OE OE2C 3E3F 6EIE 6C00
OF n OF6E 3F4E 6FOE 3100

10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900

12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300

14 S 1473 4453 7413 ' 1F00

15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 Z 187A 485A 7817 2C00

8-11

Nimeric Section

RAW KEYTOP ALONE with with with
KEYCO0E SHIFT CTRL COMMAND

C4
0

5200 D82E 7700 5200
C5 5300 D930 6700 5300
C6 00 7200 trapped 7800 7200
C7 1 4F00 D831 5E00 4F00
C8 2 5000 OC32 5F00 5000
C9 3 5100 DD33 6000 5100
CA 4 4800 DE34 6100 4800
CB 5 4700 OF35 6200 4700
CC 6 4D00 E036 6300 4D00
CD 7 4700 E137 6400 4700
CE 8 4800 E238 6500 4800
CF 9 4900 E339 6600 4900
DO + 7300 E42B 7C00 7300
D1 - 7400 E520 7800 7400
D2 * 7500 E62A 7A00 7500
D3 / 7600 E72F 7900 7600

8-12 UCS0 p-System Guide to the Use on M20

NAT10NAL KEYBOARDS LAYOUTS AND CODES

NORWAY KEYBOARO

000Cj0000@,Ü,=;
F)@00
Cjc=

000Cjo©@0
OoPoO[5fl 00000000

Fig. 8-7 Norway Keyboard

Alphanumeric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 < • 013C 313E 617F 7F00
02 a 0261 3241 6201 1EOO

03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08 J 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 3D4C 6DOC 2600
OE m OE6D 3E4D 6E00 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1FOO

15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 W 1977 4857 7817 1100

8-13

Nueric Section

RA5 KEYTOP ALONE with with with
KEYCO0E SHIFT CTRL COMMAND

C4
0

5200 D800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 DB00 5E31 4F00
C8 2 1142 DCOO 5F32 1142

C9 3 5100 DDOO 6033 5100

CA 4 1144 DE00 6134 1144

CB 5 4700 DF00 6235 4700
CC 6 1143 E000 6336 1143

CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 742D E52D 782D 742D
D2 * 752A E62A 7A2A 752A
D3 /. 762F E72F 792F 762F

8-14 UCS0 p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AN0 CODES

PORTU€AL KEYBOARD

000000®CZ)00000Cjo®00
BO®000000©0©Ocj @©©0

PoPE®0@00©0000©®00000000000 0000
00®0

Fig. 8-8 Portugal Keyboard

Alphanmeric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT • CTRl COMMAND

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7FOO

02 a 0261 3241 6201 1EOO

03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08 ' 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 3D4C 6DOC 2600
OE m OE6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 tJ 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

8-15

Ä*

Nimeric Section

RAW KEYTOP ALONE with with with
KEYC00E SHIFT CTRL CO"AND

C4
0

5200 D800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 D800 5E31 4F00
C8 2 1142 DC00 5F32 1142
C9 3 5100 DDOO 6033 5100
CA 4 1144 DE00 6134 1144
CB 5 4700 OF00 6235 4700
CC 6 1143 E000 6336 1143
CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141
CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 742D E520 782D 742D
D2 * 752A E62A 7N2^ 752A
D3 / 762F E72F 792F 762F

8-16 UCSD p-System 6uide to the Use on M20

NATI0NAL KEYBOARDS IAYOUTS AND CODES

SPAIN KEYBOARD

®0000®®000000CjocD00
EB®®000000©000Cj©©©0
@%OoOoO©OoOoOoOoOoOoOoO®qH

0000
DO®0

Fig. 8-9 Spain Keyboard

Alphantiioeric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h

' 0968
3948 6908 2300

OA 1 OA69 3A49 6AO9 1700
08) 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
00 1 OD6C 3D4C 6DOC 2600
OE m OE6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

8-17

}-

ltueric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

C4
0

5200 D800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 DB00 5E31 4F00
C8 2 1142 OC00 5F32 1142
C9 3 5100 DD00 6033 5100
CA 4 1144 DE00 6134 1144
CB 5 4700 OF00 6235 4700
CC 6 1143 E000 6336 1143

CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 742D E52D 782D 742D
D2 * 752A E62A 7N2^ 752A
D3 / 762F E72F - 792F 762F

8-18 UCSD p-System Cuide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

SWEDENnlNLAND KEyBOMD

®0000®0000000Cj o®00
BO®000000©000Cj ©©@0

::::-:®0@@0©0000©00000@0000000@ 0©00
00®0

Fig. 8-10 Sweden/Finland Keyboard

Alphantineric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08 J 086A 384A 6BOA 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 3D4C 6DOC 2600
OE m OE60 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2FOO

18 W 1877 4857 7817 1100

8_19

Nueric Section

RAW KEYTOP ALONE with with with
KEYC00E SHIFT CTRL COMMANO

C4
0

5200 D800 772E 5200
C5 S300 0900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 DB00 5E31 4F00
C8 2 1142 DC00 5F32 1142

C9 3 5100 D000 6033 5100
CA 4 1144 DE00 6134 1144
CB 5 4700 OFOO 6235 4700
CC 6 1143 E000 6336 1143
CD 7 4700 EIOO 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4qoo E300 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 742D E52D 782D 742D
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

8-20 UCSD p-System 6uide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

SWITZERLAND FRENCH KEYBOARD

00üü?00L?J000000Cjo®00
®0®0000000000Cj @©@0
(j®öOoOoOoOo©oOoOoOoOoOo%fl 0000

00®0

Fig. 8-11 Switzerland French Keyboard

Alphanumeric Section

RAW KEYTOP AloNE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 < • 013C 313E 617F 7F00
02 a 0261 3241 6201 1EOO
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2EOO
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08 J 086A 384A 6B0A 2400
OC k OC6B 3C4B 6COB 2500
OD 1 OD6C 3D4C 6DOC 2600
OE m OE6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1FOO

15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

8-21

B

Nueric Section

RA5 KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

C4
0

5200 D800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 0800 5E31 4F00
C8 2 1142 DCOO 5F32 1142

C9 3 5100 DD00 6033 5100
CA 4 1144 DE00 6134 1144
CB 5 4700 DF00 6235 4700
CC 6 1143 EO00 6336 1143

CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E3oo . 6639 4900
00 + 7328 E42B 7C2B 7328
D1 - 7420 E52D 7820 742D
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

8-22 UCS0 p-System Guide to the Use on M20

NAT10NAL KEYBOARDS LAYOUTS AND CODES

SWITZERLAllD 6ERMAN KEYB0ARD

®00000®000000Cil(moo
B©®000000©000Cj ©©©0

:__=1

®0@00©0000@0Cjooo©0000000Cj
0©00
00®0

Fig. 8-12 Switzerland German Keyboard

Alphanineric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 6117F 7FOO

02 a 0261 3241 6201 1EOO

03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200

07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08] 086A 384A 6B0A 2400
OC k OC6B 3C4B 6COB 2500
OD 1 006C 3D4C 6DOC 2600
OE m OE6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900

12 q 1271 4251 7211 1000

13 r 1372 4352 7312 1300

14 S 1473 4453 7413 1F00

15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2FOO

18 W 1877 4857 7817 1100

8-23

1

Nmeric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

C4
0

5200 D800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 DB00 5E31 4F00
C8 2 1142 DCOO 5F32 1142
C9 3 5100 OD00 6033 5100
CA 4 1144 OE00 6134 1144
CB 5 4700 DFOO 6235 4700
CC 6 1143 EOOO 6336 1143
CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 7420 E52D 782D 7420
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

8-24 UCS0 p-System 6uide to the Use on M20

1

NAT10NAL KEYBOARDS LAYOUTS AND CODES

USA ASCII KEYB0ARD

®00@©©©OCD0000CIOCD00
@@®000000©00CDcj@©©0
Epboooo@00o©00o000000000@PE OCD000000

Fig. 8-13 USA AScll Keyboard

Alphanumeric Section

1

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 \ 015C 317C 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100.
08 9 0867 3847 6807 2200
09 h Oq68 3948 6908 2300
OA 1 OA69 3A49 6A09 1700
08) 086A 384A 6B0A 2400
OC k OC6B 3C4B 6COB 2500
00 1 OD6C 3D4C 6DOC 2600
OE m OE6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

8-25

}

Nuiiieric Section

FtAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

C4
0

5200 D800 772E 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 DB00 5E31 4F00
C8 2 1142 DC00 5F32 1142
C,9 3 5100 DD00 6033 5100
CA 4 1144 OE00 6134 1144
CB 5 4700 DF00 6235 4700
CC 6 1143 E000 6336 1143
CD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141

CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C2B 7328
D1 - 742D E52D 782D 742D
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

8-26 UCSD p-System 6uide to the Use on M20

NATIONAL KEYB0ARDS LAYOUTS AND CODES

YUCOSLAVIA KEYB0ARD

®00©0©©OCD©@00CjocD00
B©®000000©00©Cj @©©0

-:--=_-
®0000000000©Cjooooooooooo® 0000

00®0

Fig. 8-14 YU60SLAVIA Keyboard

Alphant.i-eric Section

RAW r KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAND

00 RESET 0018 3000 trapped trapped
01 \ 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 9 0867 3847 6807 2200
09 h 0968 3948 6908 2300
OA 1 OA69 3A49 6AO9 1700
08 J 086A 384A 6B0A 2400
OC k OC6B 3C4B 6C0B 2500
OD 1 OD6C 3D4C 6DOC 2600
OE m OE6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 0 106F 404F 700F 1800
11 P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 S 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 V 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

8-27

}

Nimeric Section

RAW KEYTOP ALONE with with with
KEYCODE SHIFT CTRL COMMAtr.

C4
0

5200 D800 772E_ 5200
C5 5300 D900 6730 5300
C6 00 7200 trapped 7830 7200
C7 1 4F00 DB00 5E31 4F00
C8 2 1142 OC00 5F32 1142

C9 3 5100 OD00 6033 5100

CA 4 1144 DE00 6134 1144

CB 5 4700 DF00 6235 470f/
CC 6 1143 E000 6336 1143

CD 7 4700 E100 6437 4703
CE 8 1141 E200 6538 1141

CF 9 4900 E300 6639 490t)
00 + 7328 E42B 7C2B 7328
01 - 742D E52D 782D 742C,
02 * 752A E62A 7N2^ 752A
D3 / 762F E72F 792F 762F

8-28 UCSD p-System 6uide to the Use on r'13i)

PERSONAL COMPUTER

UCSD p-System
Operating System User Guide

ivetti

PREFACE

This publication is a User Guide for the UCSD
p-System Operating System, rile manager,
screen-oriented editor. and several utilities. It
describes the facilities of thesc major UCSD
components and provides basic instructions for
using them. lt is assumed that the reader of this
manual is somewha(familiar with UCSD. The
information presented here is meant (o comple-
ment and increase youT knowledge of the p-Sy-
s'em.

This manual describes the UCSD p-S}'stem as
developed by Softech Micros}'stems. It is re-
printed with the permission orsortech Micros}.-
stems, Inc.

The variations between the M20 version or
UCSD and UCSD as described here, are deiai-
led in the manual UCSD p-S}'stem Guide to the

Pff m M20.

p-System is a trademark of Softech Micros}.-
stems lnc.
UCSD and UCSD Pascal are ti-ademarks ol. the
Regents of the Universit}. or California.

© Cop}'righi 1983` b}' Olivetii.
All rights reserved.

© Copyrighi 1983` b}. Softech Micros.`.siems`
lnc. San Diego. Califomia.
All rights reserved.

REFERENCES:

UCSD p-System Program Develoi)ment
User Guide
Code 3986640 M

UCSD p-S}'stem Guide to the Use on M20
Code 3986390 L

UCSD p-S}'stem FORTRAN Language
User Guide
Code 3986660 P

UCSD p-S}'stem Assembler User Guide
Code 3986650 N

UCSD p-S}.stem S}.stem Programmer`s
Guide
Code 3986620 K

BASIC Rererence Manual.
Personal Computing u'ith the UCSD p-S}.-
s'em't
UCSD Pascal l{andbook'.

• publishcd b}. Softech Micros}.stems

lnc.
" published b}. Preniice-Hall and availa-

ble rrom bookstores.

DISTRIBUTION: General (G)

EDITION: Dccember 1983

RE:LE:^SE:: p-S}.stem]V

DISCLAIMER:

This document and ihe softw-are it descTi-
bes are subject io change w ithoui noiice.
No warran(}. e`pressed or implied covcrs
their use. Neiiher the manufacturer nor
the seller is responsible or liable for an}.
consequences ol. iheir use.

PUBLICATION ISSUED 8`.:

[ng. C. 0livc(ti & C .` S.Fi.A.
Direzione Documentazione
77` \.ia Jervis -10015]VREA ([tal}.)

UCSD p-System

Operating System User Guide

TABLE

OP

CONTENTS

INTRODUCTION................1-3

0RGANIZAnoN OF THIS MANUAL 1-3

BACKGROUND...............1-5

DESIGN PHILOSOPHY 1-7

User-Friendly................1-8
Portability.................1-8

USING THE p-SYSTEM 1-9

Menus snd Prompts 1-9
System Files 1-12

L*;j¥=:-T

Table of Contents

p-SYSTEM CONFIGURATIONS 1-15

THE OPERATING SYSTEM 2-3

INTRODUCTION...............2-3

MENUS AND PROMPTS 2-3

Menus....................2-3

Prompts..................2-5

DISK SWAPPING 2-8

0PERATING SYSTEM CUMMANDS 2-9

A(ssemble.................2-10

C(ompile..................2-12

D(ebug..................2-14
E(dit....................2-15
F(ile....................2-16

H(alt...................2-17
I(nitialize.................2-18
L(ink...................2-19
M(onitor..................2-20

R(un....................2-22
U(ser Restart 2-23
X(ecute..................2-24
Execution-Option Strings 2-26
Prefixes and Libraries 2-28
Redirection...............2-29

Table of Contents

• FII,E MANAGEMENT 3-3

INTRODUCTION...............3-3

FILE ORGANIZATI0N 3-5

File and Volume Names 3-6

File Name Suffixes 3-12

Devices and Volumes 3-15

WORK FILES 3-18

USING THE FILER 3-20

Filer Menus 3-20

Wild Cords 3-22

RECOVERING LOST FILES 3-27

Duplicate Directories 3-30

SUBSIDIARY VOLUMES 3-33

Creating and Accessing SVOLs 3-34
Mounting and Dismounting Svoljs 3-37

Installation lriformation 3-42

USER-DEFINED SERIAL DEVICES 3-43

FILER FUNcnoNS 3-44
B(ad Blocks 3-45

C(hange..................3-47

D(ate...................3-52

E(xtended List 3-54

F(lip Swap/Lock 3-56

Table of Contents

G(et ' . 3-58
K(runch...................3-60

L(ist Directopy 3-63

M(ake...................3-68

N(ew...................3-70

0(n/off-line................3-71
P(refix..................3-74

Q(uit ' . . ' . . ' 3-76
R(emove...................3-77

S(ave....................3-80

T(rQnsfer.................3-82
V(olumes...................3-93

W(hat...................3-95

X(amine..................3-96
Z(ero...................3-99

SCREENORIENTED EDITOR 4-3

INTRODUcnoN...............4-3

THE EDITOR 4-3

Introduction................4-3
The Window into the File 4-3
The Cursor 4-4
'ITie Menu 4-5

Nototion ConventioTis 4-5
Editing Environment Optiom 4-6
Command Hierarchy 4-6
Repeat Factors 4-7

Table of Contents

Direction lndicator .
Üsing the Editor . . .

Moving the C.ursor .

F(ind and R(eplace .

Work Files

Using lnsert
Using Delete
Leaving the Editor .

4-8
.4-8

4-8
4-13

4-15

4-16

4-17

4-18

Screen-Oriented Editor Commands 4-20
A(djust.......

C(opy........

D(elete-.......

F(ind........

Insert........

Using Auto-Indent .
Usin8 Filling ...,

J(ump........

K(olumn.......

M(argin.......

. 4-20

. 4-22

. 4-25
. 4-28

. 4-31

. 4-32

. 4-32

. 4-35

. 4-36
. 4-37

Command Characters 4-39
P(age......

Q(uit.......
U(pdate:....

E(xit:......

R(eturn:....
W(rite:.....

R(eplace.....

S(et.......

............ 4-40

............ 4-41

4-41

4-41
4-42

4-42

4-43

............ 4-46

Table of Contents

S(et E(nvironment
E(nvironment Options . .
S(et M(ai.ker . : ,

V(erify..........

4-46
4-47
4-50

. 4-52

X(change.................4-53

Z(ap. ' . ' 4-55

UTILITY PROGRAMS 5-3

INTRODUCTION...............5-3

PRINT....................5-4

Introduction................5-4
Simple Uses of PRINT 5-5
hteracting with PRINT 5-7
Controlling the Layout of Pages 5-8
me Content of Pages 5-9
0utput Methods 5-16
PRINT lnvocation Shortcuts 5-17
Summary of Menu ltems 5-19
Summary of Command Lines 5-21
Summary of Escape Sequences 5-22

PRINT SPOOLER 5-23

QUICKSTART...............5-26
Introduction................5-26

QUICKSTART Utility Operation 5-28
System Environment Preparation 5-28
C(opyToggleOption 5-28 i

Table of Contents

L(ibraDy Copy Toggle Option 5-30
M(essages Toggle Option 5-31

Using The QUICKSTART Utility 5-31
P(rogram Command 5-33
S(ystem Command 5-37
0bsolete Environment Descriptions. . . 5-39

QUICKSTART Error Messages 5-41

REAL CONVERT 5-47

LIBRARY..................5-50
Using Library 5-51
Library Example 5-52

SETUP...................5-56

Running SETUP 5-57
Miscel]aneous Notes for SETUP 5-60
SYSTEM.MISCINFO - Data ltems 5-63
SummaLpy of Data ltems 5-82
Sample SETUP Session 5-84
Sample Terminal Setups 5-87

DISRSIZE..................5-90

COPYDUPDIR...............5-92

MARKDUPDIR...............5-93

RECOVER.................5-95

Table of Contents

APPENDICES..........

A: EXECUTION ERRORS . . .

8: I/O RESULTS

C: DEVICE NUMBERS

D: ASCII TABLE

E: CONFIGURATION NOTES .
F: p-SYSTEM GLOSSARY . .

.A-1

.A-2

.A-3

.A-4

.A-5

.A-6

. A-18

lNDEX.....................1-1

C H A P TE R I

INTRODUCTI0N

Introduction

ORGANIZAUON OF THIS MANUAL

This book is the main user reference manual for
the p-System®.

Chapter 1, "Introduction," presents backgi.ound
information about the p-System, including a short
history of p-System development and a description
of p-System components.

F Chapter 2, ''The Operating System," describes the
function of each system command. It also presents
exsmples of the main system menu and gives
suggestions snd procedures for interacting with the
p-System.

Chapter 3, ''File Management," pi.esents information
about file organization and f fle handling, as well as
descriptions of the file manager ("filer") and its
functions.

Chapter 4, ''Screen-Oriented Editor," describes the
p-System's main text editor.

Chapter 5, "Utility Programs," covers several
p-System utilities. These utilities can help you to
print files, recover lost files, configure the
p-System for a particular terminal, and so fortli.

010010lsolA 1-3

htroduction

'n`e &ppendices present useful reference material:

A Execution Errors
8 1/0 Results/Errors
C Device Numbers
D ASCII Code
E p-System Configurazion Notes
F p-System Glossary

1-4 0100101:01A

Introduction

BACKGROUND

ln June 1979, SofTech Microsystems in San Diego,
began to license, support, msintain, and develop the
p-System. The resulting effort to bund the world's
best smsll computer environment for executing and
developing applications has dramaticsuy incressed
the growth and use of the pßystem. This universal

::::::£a¥edsys:::p£n)°e¥s°fff:rrs€Ud)syDC°pmapsacti?be;
FORTRAN-77, and BASIC. The first piystem ran
on a 16-bit microprocessor. Today, the p-System
runs on sbit, 16-bit, and 32bit machines-including
the Z80, 8080/8085, 8086/8088/8087, 6502, 6809,
68000, 9900, PDP-11, LSI-11, and VAX.

The p-System began as the solution to a problem.
The University of California at San Diego needed
interactive access to a highlevel language for a
computer science course. In late 1974, Kenneth L.
Bowles began directing the development of the
solution to that problem: the p-System. He played
a principal role in the early development of the
software.

In the summer of 1977, a few offiampus users
began running Q version of the p-System on a
PDP-11. When a version foi. the 8080 and the Z80
began opersting in early 1978, outside interest
incressed until a description of the p-System in
Byte Magazine drew over a thousand inquiries.

Oloo10l:01A 1-5

Introduction

As interest grew, the demand for the p-System
couldn't be met within the available resources of
the project. SofTech Microsystems was chosen to
support and develop the p-System because of its
reputation for quality, high technology, and
language design and implementations.

1-6 0100101:01A

Introduction

DESIGN PHILOSOPHY

TT`e development team, many of whom continued
their efforts on behalf of the system at SofTech
Microsystems, decided to use stand-alone, persoml
computers as the hardware foundation for the
p-System rather than lai`ge, timeiharing computers.
They chose Pascal for the progi.amming language
because it could serve in two capacities: the
language for the course and the system software
implementation language.

TTie development team had three primary design
concei`ns:

1. The user interface must be oriented specificany
to the noviee, but must be acceptable to the
expert.

2. The implementation must fit into personal,
stand-alone machines (64K bytes of memory,
standard floppy disks, and a CRT terminal).

3. The implementation must provide a portable
software environment where code fnes (including
the operating system) could be moved intact to
a new microcomputer. In this way, application
programs written for one mici.ocomputer could
run on another microcomputer without
recompilation.

The current design philosophy at SofTech
Microsystems, where the p-System continues to
evolve, is bascially tlie same as the original
philosophy.

010010l:01A 1-7

Introduction

User-Priendly

The p-System continuously identifies its current
mode and the options available to you in that
mode. This is accomplished by using menus,
displays, and prompts. You may select an option
from a menu by pressing a single-character
command. TTie system's displays then guide your
interactions with the computer. As you gain
more experience, you can ignore the continuous
status information-unless it is needed.

Portability

The pisystem is moi'e portable than any other
microcomputer system. It protects your software
investments without restricting hardware options.
The p-System does this by compiling programs
into p-code-rather than native machine
languagerthus, 8llowing these code files to be
executed on any microcomputer that runs the
p-System.

1-8 0100101:01A

htroduction

US[NG THE prs¥STEN

Ttie p-System includes sn operating system, fi]er,
editor, and several other components. . The filer,
editor, 8nd other components are separate. programs
that perform functions traditiondly performed by an
operating system.

Menus and ProDpts

`Itie p-System is menuiriven; that is, it displays
a menu at the top of tl`e screen that lists the
available commands. To use any one of these
commands, you need press only one key. Often,
prompts are displayed. They require you to enter
in e response and then press the <return> key.
You can use <backspace> if you make a mistake
while pesponding to a prompt.

The mönus and prompts are organized in a
hierarchy (see Figure 1-1). The outermost
(Command) menu lists severd items, including
E(dit. When you press 'E' to call the E(dit
option, the p-System activates the editor. To
quit using the editor, press 'Q' for Q(uit; this
wiu return you to the Command menu.

Figure 1-2 graphic®lly describes the
interrelationships of the major p-System
components.

0100101:01A 1-9

Introduction

E-
E--
•=-

E-1
F=LimlE+

LJ

Dii1
E--

Figure 1-1. Command Hierai.chy

1-10 010010l:01A

Introduction

Figure 1-2. Major p-System Components

0100101:01A 1-11

Introduction

System Piles

The system fi]es are disk files which contain the
bulk of the p-System.

Most of the system files reside on the system
disk, which is the disk, you bootstrap with.

These files are listed as follows:

SYSTEM.PASCAL
SYSTEM.INTERP
SYSTEM.MISCINFO
SYSTEM.LIBRARY
SYSTEM.EDITOR
SYSTEM.FILER
SYSTEM.ASSMBLER

The following system files ma.\' be .`reated on the
system disk, if required:

SYSTEM.MENU
SYSTEM.STARTUP
SYSTEM.SYNTAX

SYSTEM.PASCAL is the operatiiig s}'stem.

SYSTEM.MISCINFO is a data l`ile that .`ontaiiis
miscellaneous informatioii about an iiidividual
system. This includes terminal haiidling` memor}'
configurations` and miscellaiieous options.

1-12 0100101:01A

Introduction

SYSTEM.EDITOR contsins the current system
editor that you can call by pressing 'E' for
E(ditor-as displayed on the Command menu. This
may be the screen-oriented editor or any other
editor that the p-System uses. To use another
editor, simply change its f ile name to
SYSTEM.EblTOR after changing the original
SYSTEM.EDITOR to something else.

SYSTEM.COMPILER may contsin s Pascal,
FORTRAN, or BASIC oompiler. To call the code
files for FORTRAN or BASIC compilers, with a
single keystroke from the Command menu, change
the name of the desired files to
SYSTEM .COMPILER.

SYSTEM.ASSMBLER is the adaptable assembler
that translates assembly language into machine
code.
You can change to a different processor by
changing the name of the appropriate assembler
to SYSTEM.ASSMBLER. The assemblers are
p-code files and are, therefore,
machine-independent. They can be used to
assemble codes for processors other than the host
processor. The assembler needs an opcodes and
an errors file.

SYSTEM.SYNTAX contains the Pascal compiler's
error messages. It must be on the boot disk if
you want to have compile-time errors displayed in
English rather than as error numbers.

0100101:01A 1-13

Introduction

SYSTEM.LIBRARY contains previously compned or
assembled routines that can be used by other
programs. Long integer support routines are
usually found liere.

SYSTEM.STARTUP is an executable code file. If
a file called SYSTEM.STARTUP is present on the
system disk when it is bootstrapped, the p-System
executes it before the Command menu is
displayed.

SYSTEM.MENU, like SYSTEMSTARTUP, can be
any executable code file. If it is present on the
system disk, it is executed every time the
Command menu is about to be displayed. This
facility is generally used as a menu driver for
turnkey applications. (If SYSTEM.STARTUP
exists, it is executed before SYSTEM.MENU is
cslled for the first time.)

SYSTEM.INTERP is the assembly langusge
progi.am that emulates the p-machine on the host
processor. The following are some other possible
names for these emulstors, which are usually
machineipecific:

SYSTEM .PDP-11
SYSTEM.ALTOS
SY STEM .H EATH

1-14 0100101:01A

Introduction

pTS¥STEM CONF]GURAT[ONS

There are two msin p-System configurstions. The
first configuration, which is standsi.d, displays the
Command menu wrien it is booted. As already
mentioned, fi.om this menu, you may select the
major p-System components and execute programs.

The second configurstion, on the other hand, never
displsys the msin p-System menu. It is intended to
be bundled with application progrsms which disp]ay
their own menus and prompts. When this
configuration is employed, the p-System is "hidden"
undernesth the application's own environment.

0100101:01 A 1-15

C H A P TE R 2

TH'E

O P E R A TI N G S Y S TE M

Opersting System

INTRODUCTION

TT`e operating system is the core of the p-System.
When you first boot the p-System, the operating
system's menu appears. From here, you can select
otrier major p-System components or run programs.
Each time a p-System component or a program
f inishes execution, you are returned to the
opei.ating system's menu.

The operating system's menu is called the
''Command" menu. The items on it include the
editor, filer, compi]er, and moi.e.

This chapter describes how menus and prompts are
used by the p-System. It goes on to describe the
particular items on the Command menu.

MENUS AND PROMPTS

Menus

The fouowing describes the menus used by the
p-System.

• The first woi.d (title) of the menu identifies
the level of the menu, for example, Command
or Edit.

0100101:02A 2-3

Opei.ating System

• The sections available on a menu are locsted
to the riglit of the menu title. The letter
denoting the key that selects sn option is
capitslized and set off from the i`est of the
woi`d with a parenthesis.

• The version number of the system is listed at
the end of the line in square brackets.

• A question mai.k on the right of a menu
indicates that there are moi.e items on the
menu than can fit on a single line. Entering
'?' causes more of the menu to be displayed.

Some typical menus sre listed as follows:

CoiTLn,and: £(ciit, FHun, F`(ile, C(omp, L(ink, X(ec`ute, A(ssem, D(ebug

F`iler: G(et, S(ave, W(hat, N(ew, L(air, R\€.rr,, C`(hng, T(rans, D(ate,
`J£ait: A(d]ust C(opy D(el f(ind I(nsert J(urrF K(cl M/a[gin P(age ?

If you erter '?' at the Command menu, the
following is displayed:

Command: H(alt, I(nitialize, U(ser [estart, M(on}to[

Selecting sn option, at the Command menu,
produces one of the following results.

• The p-System allows you to execute a
Pr08ram.

• A p-System component is stai.ted; for example,
the filer or editor.

2-4 0100101:02A

Opersting System

• TTie system dters its state, for example, as
when you select H(alt.

In general, you may exit from the system
commands by pressing 'Q' (for Q(uit).. After
performing a function, you may press <space> to
clear the screen and redisplay the menu.

Prompts

As just discussed, a menu displays options you
can select with a single keystroke; however, a
prompt requests information from you. For
example, if you want to execute a program, you
would select the X(ecute option from the
Command menu by pressing 'X'; the system will
respond with the following request-called a
„promptM:

£xeci]te vhat f ile?

You response to this would be to enter the
name of the program to be executed and then to
press <return>.

If you make an error while entering your
response, you can press the <backspace> key to
correct it. You can also use <delete line> to
erase your entire resprße. You can then resume
entering the correct resporBe.

0100101:02A 2-5

Operating System

Another example of a prompt is when you use
the fner to list the directory of a volume.
After pressing 'F' on the Command menu to
display the F(iler menu, and then 'L' on the
F(iler menu, the following prompt will be
displayed:

Dir ii:`ting of `r.at ..-ol?

Your response to this prompt would be to enter
in any valid volume name and then to press
<retul.n>,

Often prompts require that you enter a file
name. File names (as described in Chapter 3)
often end with specific suffixes sucli as ".TEXT"
or ".CODE." Usually, in response to a pi`ompt,
you sliould omit these suffixes. The system
programs sppend them automaticslly. To prevent
sutomstic appending, place a period at the end
of the file name.

When a program-such as a compiler-requires both
s source text f ile and s destination code file
name, tlie code file name msy be given as 'S'.
This indicates the same name as the text file
with .CODE appended instead of .TEXT.
Alternstively, you can use 'S.', which is the
source file name exactly.

2-6 0100101:02A

Operating System

For example, press 'A' to select the A(ssembler.
The system then displays the fouowing prompt:

Ass(.n_b}e w!,Jt !i;t?

Enter YOUR.FILE and press <return>. Assuming
thst YOUR.FILE.TEXT exists, the system displays
the following prompt:

Code 1-i}e nan`.c`?

Enter 'S' and press <return>.

The preceding sequence assembles the file
YOUR.FILE.TEXT and plsces the resulting code
in YOUR.FILE.CODE.

You may also use device names when responding
to certsin prompts. For example, tlie assembler
next displays this pi.ompt:

Output f ile fo[asem.bled listing: (`CRn for none)

You could enter PRINTER: and press <retui.n>.
The printer is a device (not a file). The
sssembled listing is sent there.

0100101:02A 2-7

Operating System

DISK SWAPPING

Since the opersting system swaps code segments
into and out of main memory while a program is
running; and since you may change disks at various
times, the opersting system has various checks to
aid you in handling disks, tlius, reducing errors.

When a program requires a code segment from a
disk, but the disk containing the code segment is
no longer in the drive, the operating system
displays the following error message on the bottom
of the screen:

Need Segment SEGNAME:: Piit volume VOLNAME in unit 11 then type <space>

In the preceding example, the system couldn't find
the disk VOLNAME and waits until you press
<space>. (If you press <spsce> but haven't
replaced VOLNAME, the system i.edisplays the error
message.)

2-8 0100101:02A

Operating System

oPERAnNG SysTEH COMMANDS

This section covers the items on the Command
menu in alphabeticd order. Most of these items
are described in greater detsil elsewliere.

In particulsr, the filer is described in Chapter 3 of
this manual. Also, the editor is covered in Chapter
4.

TTie assembler and linker are covered in a separste
assembler manual.

The compiler and debugger are covered in the
UCSD stem Pro ram Development User Guide.

0100101:02A 2-9

Operating System Commands: A(ssemble

A(ssemble

On the menu: A(ssem

This command stai.ts the assembler
SYSTEM.ASSMBLER (note that there is a missing
"E"). If a work file is present, then
*SYSTEM.WRK.TEXT or the designated file is
assembled to a code file of a given machine code
(depending on wliich of the assemblers has been
named SYSTEM.ASSMBLER). If there is no work
file, the system displays a request for a source
fne, a code file, 8nd a listing file; the defaults
for these are *SYSTEM.WRK.TEXT,
*SYSTEM.WRK.CODE, and no listing file. If you
simply press <return> for the source f ile, the
assembly is aborted. Similarly, if you press. <esc>
f ollowed by <return> for the code file or listing
file, the assembler is existed.

If the assembler encounters a syntax error,
displays the error number, and the source line
question. It slso displsys an error message
the file *xxxx.ERRORS is present, where xxxx
the correct processor name, that is,
Z80.ERRORS). It gives you some options:

E:rror 11: er[o[message
<sp>(continue), <esc>(terminate), £(dit

You may continue the assembly by pressing
<space>; abort the assembly by pressing <escape>;
or, proceed directly to the editor to correct the
source file by pressing 'E'. In the latter case,
the system positions ttie cursor where -the error
was detected.

2-10 0100101:02A

Operating System Commands: A(ssemble

The assembler is described in the manual
UCSD -System Assembler User Guide.

010010l :02A 2-11

Opersting System Commands: C(ompile

C(oDpile

On the menu: C(omp

This command starts the compiler,
SYSTEM.COMPILER. If a work file is present,
either *SYSTEM.WRK.TEXT or the desigmted
text file is compiled to p-code. If there is no
work file, the system displays a request for a
source file and s code file. If you press
<return> for tlie code file, the default code is
*SYSTEM.WRK.CODE. If you simply pi.ess

<return> for the source file, the compilstion is
aborted; and, if you press <esc> <return> for the
code file, the compilstion is aborted.

Next, the compiler asks for a listing file. This
may be a disk file (sucli as LIST.TEXT)
communications volume (such ss PRINTER:).
you simply press <return>, no listing file
genersted. If you press <esc> followed
<return>, the compilation is aborted.

If the compner encounters a syntax error, it
displays the error number, the source line in
question, and the following menu.

Error 1*
Line 1I
Type <sp>(continue), <esc>(te[minate), or 'E' to e(dit

2-12 0100101:02A

Opersting System Commands: C(ompile

You may continue compilstion by pressing

;:gcceee>d,äpro.rctt,?omtgil:thieone3yto?re::ingor<reescct>,t3:
source file by pressing 'E'. In the latter case,
the editor will position the cursor where the
error was detected.

If the file *SYSTEM.SYNTAX is present, the
Pascal compiler displays a relevant error message
instead of tlie error number.

The Pascal compiler is described in the manual
UCSD stem Pro ram Develo ment User Guide
and the publication UCSD Pascal Handbook
The FORTRAN compiler is described in the manual
UCSD p-System FORTRAN Language User Guide.
The BASIC Compiler is described in the manual
BASIC Reference Manual.

0100101:02A 2-13

Operating System Con]mands: D(ebug

D(ebug

On the n-.enu: D(ebug

This command starts the symbolic debugger. The
debugger resides within SYSTEM.PASCAL. If
your copy of SYSTEM.PASCAL doesn`t contain
the debugger` you need to use the Library utility
(described in the UCSD p-S stem Pro
Development User Guide) to place
DEBUGGER.CODE into SYSTEM.PASCAL.

The symbo]ic debugger is a tool for debugging
compiled progi`ams. You can call it from the
Command menu or while a program is executing
(when a break point is encountered). Using the
symbolic debugger, you may display and alter
memory, single step piode, and do several other
useful debugging operstions.

To use the debugger effectlively, you must be
familiar with the p-machine architecture and must
understand the p-code operators, stack usage,
variable and parameter allocation, and so on.
These topics are discussed in the UCSD

stem Pro rammer's Guide.

For more information about the symbolic
debugger, refer to the UCSD
Develo

stem Pro
ment User Guide.

2-14 0100101:02A

Opersting System Commands: E(dit

E(dit

On tlie menu: E(dit

This command starts the editor, SYSTEM.EDITOR.
If a .TEXT work file is present, the system
indicotes its availability for editing. If no work
f ile is present, the system displsys a request for
a fne name along with the option to escape from
the editor, or to enter the editor with no file
(witli the intent of cresting a new one).

Use the editor to creste either program files or
document text files and to alter or add to
existing text files. (Refer to Chapter 4, "System
Editors," in tliis msnual, for more information
about the editor.)

0100101s02A 2-15

Operating System Commands: F(ile

F(ile

On the menu: F(ile

"is command stsrts the filer, SYSTEM.FILER.
The filer provides f unctions for managing files,
manipulating work files, and maintaining disk
directories. (Refer to Chapter 3, ''File
Management," in this manual, for detailed
coverage of the filer.)

2-16 0100101=02A

Operating System Commands: H(alt

H(alt

On the menu: H(alt

This command stops System operstion. To restsrt
the p-System af ter a H(alt, you usuany need to
reboot it. Some systems may automstically
reboot in response to this commsnd.

On most single user personal computers, use of
the H(alt command is optioml. It is often
sufficient to remove the system disks and turnoff
the power.

0100101:02A 2-17

Operating System Commands: I(nitialize

I(nitialize

On the menu: I(nit

This command reinitializes the p-System.

*SYSTEM.STARTUP is executed if present.
SYSTEM.STARTUP must be s code file; it is
executed automstically after a bootsti.8p or an
I(nit command. If SYSTEM.MENU is present, it is
then executed.

All run-time errors that sren't fatal cause the
system to initislize in the same manner as
I(nitialize. At initialize time, much of the
system's internal data is rebuilt,. and
SYSTEM.MISCINF0 is reread.

An I(nitialize command doesn't clear any 1/0
redirection, but run-time error reinitialization
does.

2-18 010010l:02A

Operating System Commands: L(ink

L(ink

On the menu: L(ink

TTiis command starts tlie Linker, SYSTEM.LINKER.
Tlie linker allows you to link assembled machine
code routines into liost compilation units
(compiled from a high-level language). It also
dlows you to link native code routines together.

It is described in a sepsrate assembler manual.

0100101s02A 2-19

Opersting System Commands: M(onitor

M(onitor

On the menu: M(on

This command invokes the monitor. The monitor
helps you to create "script files" wliich drive the
system automaticslly. While in the monitor mode,
you may use the p-System in a normal manner,
but au your input is saved in the script file.
Lster, you can i.edirect the p-System's input to
that file and your actions st the keyboard sre
reproduced.

Press 'M' to start the M(onitor. The system then
displays the following menu.

Monitor: B(egin, E(nd, A(bort, S(uspend, R(esume

Press '8' to select the B(egin option. The
system then requests a file riame where it will
store your sequence of activities. Enter the file
name and press <return>. Then R(esume snd use
whatever p-System commands you wish. When
you are finished, select M(onitor again. Press 'E'
to select the E(nd option.

All your input will be saved in the file you
named. To use this file, redirect the system
input to it with the 1= execution option string.

B(egin starts a monitor. If a monitor file has
slready been opened, the system displays an error
message.

2-20 010010l:02A

Opei.ating System Commands: M(onitor

E(nd terminates monitor mode and saves the
monitor fne. If no monitor file is open, an error
message is displayed. (You must use S(uspend or
R(esume to return to the Command menu.)

A(bort terminates monitor mode but do;sn't save
the monitor file. (You must use S(uspend or
R(esume to return to the Command menu.)

S(uspend turns off monitoring but doesn't close
the monitor file. In other words, you are
retui.ned to the Commsnd menu where you can
now enter commsnds without recording them.
The monitor file remsins open and in a stste
where you can add to it by using R(esume.

R(esume stsrts monitoring sgain and returns you
to the Command menu. If monitoring wasn't
suspended, no action occurs.

The monitor fne can be either a .TEXT file or a
data file. If it is a .TEXT file, you can use tlie
editor to alter it, but only if the monitoring
hasn't recorded special characters thst the editor
doesn't allow.

The M(onitor command itself csn never be
recorded in a monitor file.

OIO0101:02A 2-21

Opersting System Commands: R(un

R(un

On the menu: R(un

This command executes the current work file. If
there is no current code file in tlie work file,
the R(un command calls the compiler; and if the
compilation is successful, runs the resulting code.
If there is no work f ile at all, R(un caus the
compiler, which then displsys a i.equest for the
name of a text file to compne.

2-22 0100101:02A

Operating System Commands: U(ser Restart

U(ser Restart

On the menu: U(ser Restart

This command causes tlie last program executed
to be executed over agsin, with all file
parameters equal to previous values. U(ser
restsrt csn't restsrt the compiler or assembler.
It is useful for multiple runs of your program.

0100101 =02A 2-23

Operating System Commands: X(ecute

X(ecute

On the menu: X(ecute

Tliis command executes a program. It displays
the following pi.ompt.

Execute what f ile?

You sliould respond with an execution option
string. In the simplest case, tliis string contains
nothing but the name of a code fne (program) to
be executed.

If the code ffle can't be found, the message:

No f ile <f ile name>

is displsyed. If the program requires assembled
code which hasn't been linked, the message:

Miist L(ink f i[st

2-24 0100101:02A

Opersting System Commsnds: X(ecute

is displayed. If the code file contsins no
program (that is, 811 its segments are unit or
segment routines), the message:

No program in <f ile nam,e>

is displayed.

If trie execution option string contains only
option specifications, they are trested as
described under "Execution Option Strings" at the
end of this section. If the string contains botli
option specificstions and a code fne name, the
options are handled first; and tlien the code file
is executed, unless one of the erroi.s nsmed in
the preceding pamgraph occurs.

The' X(ecute command is commonly used to 'cdl
programs thst have 8]ready been compiled. You
may also use it to simply take advsntage of tlie
execution options.

The code file mu`st have been created with a
.CODE suff ix, even if its name has subsequently
been chsnged.

0100101:02A 2-25

Operating System Commands: X(ecute

Execution-Option Strings

The X(ecute command allows you to specify
some options that modify the system's
environment. These include redirecting input
and output, changing the default pi.efix, and
changing the default library text file. These
options are svailable from within programs as
well as from the X(ecute command st the
keyboard.

All of tliese options are specified by means of
executioni>ption strings. An execution-option
string is a string that contains (optiomlly) one
f ile name followed by zei.o or more option
specifications. An option specification cQnsists
of one or two lettei's followed by an equals
sign (=), possibly followed by a file name or
litel.al String.

The following table is a list of the possible
execution options witli a summary of their uses.

L = chsnge the default library text file
P = change the default prefix
PI = redirect Brogram input
PO = redirect program gutput
I = redirect system input
0 = redirect system gutput

Library text files are describes in the UCSD
stem Pro

2-26

Development User Guide.
Prefixes are covered in this manual in Chapter 3,
"File Management"; and 1/0 redirection is

explained below.

010010l:02A

Opersting System Commands: X(ecute

You may use capital or lowei.case letters with
execution options. Seversl different execution
options may be entered st s single time. They
must be sepai.ated by one or more spaces.
Tliere may be a single space between the equal
sign (=) and the following f ile name or
strin8.

If you are executing a program, you must
specify the name of the program to be
executed ±££gE£ specifying any execution
options. These execution options can be
specified in any order, however.

The following items define the sctual order in
which execution options are actuany performed.

1. Change the prefix if the P= option is
present;

2. Change the library text file if the L= option
is present;

3. Pei.form the 1/0 redirections (if sny are
present, the order of i.edirection options is
iri.elevant).

4. Execute the file if specified.

0100101:02A 2-27

Opersting System Commands: X(ecute

The execution options are described in the
following paragraphs. They may be called b}J
using the X(ecute command. Redirectioii from
within your program may be accomplished
through procedures in a unit called
COMMANDIO. See the UCSD p-S.\'stem Pro
Develo ment User Guide for more information.

Prefixes and Libraries

You can cliange the default prefix with the
P= execution-option string. After this is
done, au file names that don't explicitly
name a volume are pi.efixed by the default
prefix. This is equivalent to using the
P(refix command in the filer.

To change the default prefix, press 'X' to
select X(ecute. Enter 'p=disk2' and press
<return>. Tlie prefix is now DISK2:.

You can change the default user library text
file in the same way. The library text file
is a file that contains the names of your
libraries. When you run a program with
separately compiled units, the system
searches for them first in the files named in
the library text file and then in
*SYSTEM.LIBRARY. When the system is

booted, the default library text file is
*USERLIB.TEXT. (This is all covered in the

UCSD stem Pro Development User
Guide.)

2-28 0100101:02A

Operating System Commands: X(ecute

To change the default library text file, pi.ess
'X', then enter 'L=mylib' to make the file
MYLIB.TEXT the new default library text
file,

Enter 'pi.og l=mylib' to make the file
MYLIB.TEXT the new library text file and
execute the fne PROG.CODE.

Redirection

The fonowing execution-option strings control
redirection:

PI = <file name>
PI = <strin8>
PO = <file name>

<file name>
I = <string>
0 = <file name>

PI= redirects program input. PI=<file name>
causes the input to a program to come from
the file named. PI=Gtring> causes the input
to a pi.ogram to come from the ppogrsm's
scrstch input buffer and appends the string
given to the scratch input buffer (scrstch
input buffers are discussed in the following
paragraphs).

PO= redirects program gutput. PO=<file
name> causes program output to be sent to
the file named.

0100101:02A 2-29

Operstihg System Commands: X(ecute

PI= overrjdes any previous input redirection.
Likewise, PO= overrides any previous output
redirection. Using PI= (PO=) without a file
name mskes program input (output) the same
as system input (output).

1= redirects system jnput. I=<file name>
causes system input to come from the file
named. I=<string> csuses system input to
come from thc system's scratch input buffer,
and appends the string to the sci.atch input
buffer. Scratch buffers sre described in the
following pai.agrsphs.

0= redirects system gutput. O=<fne nsme>
causes system output to be sent to the file
named.

Like PI=, 1= overrides any previous 1=; and
like PO=, 0= overrides any previous 0=.
Using 1= without a file name resets system
input to CONSOLE:. Using 0= without a
fne name resets system output to CONSOLE:.

For PI=<file name> and I=<file name>, the
<file name> may specify either a disk file
an input device that sends characters.
tlie file is a disk file, redirection ends
the end of the file; and the system performs
the equivalent of an input redirection with
no file name, thus resetting input. If the
file. is a device, redirection continues until

g::treox|p',i::tlsyysct:a#er.ii.aTei:.::opY.sr,y?:u:3
8s REMIN:).

2-30 0100101:02A

Opersting System Commands: X(ecute

For PO=<file nsme> and O=<file name>, the
<file name> may specify either a disk file or
an output device that receives characters.
If the file is a disk file, it is named literally
as shown; that is, to make it a text file, you
rr.ust explicitly type .TEXT. Whenever output
redii.ection is changed, tlie f ne is closed and
locked.

For PI=<string`> and I=<string>, the <string>
msy be sny sequence of characters enc]osed
in double quotes ("). A comma within the
string indicates a carrisge return. Any
doub]e quote embedded in the string must be
pressed twice.

When input is redirected to a string, that
string is placed in a first~in-first-out queue
called the scratch input buffer. Anything
that already exits in the scrstch input buffer
is read before the quoted string. The
p-System has an area of memory devoted to
its scratch input buffer. A program has a
separate scratch input buffer of its own. If
there is nothing already in the scratch
buffer, it is as if input is taken immediately
from the string itself.

If you redirect input to come from both a
f ile and a scratch input buffer, the scratch
buffer is used first.

0.100101:02A 2-31

Opersting System Commands: X(ecute

Program redirection ends when the program
terminstes. If there are still characters in
the program's scratch input buffer, they
aren't used.

System redirection ends when the system
terminates with a halt or a run-time error.
An I(nitialize commsnd doesn't alter system
redirection. The system's scratch input
buffer is lost when system redirection
terminstes.

NOTE: The redirection applies only to
higtrlevel 1/0 operations, such as WRITELN
and READLN in Pa§cal. Lower-level 1/0
opei.ations, such as UNITREAD and
UNITWRITE, are NOT intei.cepted, thus, can't
be redirected. Also, BLOCKREAD and
BLOCKWRITE aren't redirected. This means
thst if you redirect a program which uses
any of these operations, tliey won't be
redirected.

Redirection also can't affect calls in the
following form because these calls don't
involve the standard input snd output files.

R£WRITE (MY_F`I LE: , ' CONSOLE: ') ;
WRITE(MY_FILE, LOTS_Of_TEXT)

2-32 0100101=02A

Operating System Commands: X(ecute

Here is a sir?:ple example of redirecting the
system input to a string:

Execiite what f ile? I=-F`L+,O.

This causes tlie p-System to enter the f iler
('F'), list the directory on the boot disk
('L*,'), remember that comma means <retum>,
and Q(uit the fner ('Q').

To redirect progrsm input to the file IN
(which might have been crested using.
M(onitor), 8nd program output to the file
OUT, for s pi`ogram called PROG.CODE;
press 'X' to call tlie X(ecute command and
respond:

Execute what f ile? PROG PI=IN PO=OUT

To stop system input redirection, enter '1='.

If you enter:

PO= sto[eme.text PI= i=.fgRui"E,qr P=WORI(2

0100101:02A 2-33

Operating System Commands: X(ecute

The p-System performs these actions:

• Makes the defaut prefix WORK2:

• Redirects program output to the file
WORK2:STOREME.TEXT

• 'I\irns off program input redirection

• Fonow`s the script "fgRUNME,qr"
f: enter the filer;
gRUNME,: G(et the work file

WORK2:RUNME.TEXT and
WORK2:RUNME.CODE;
(The comma acts as a carriage return.)

q: Q(uit the filer
r: R(un the program WORK2:RUNME.CODE;
(Note that its output has been redirected).

The fonowing entry does tlie same thing.

PO= storeme.text PI= I=.fpwoRK2:,gRUNME:,qr.

2-34 0100101:02A

C H A P T E R 3

FILE

MANAGEMENT

Fne Mamgement

INTRODUCTION

mis chapter covers topics which are relevant to
mamging the files on your disks.

First, files and volumes are described in general.
File and volume nsming conventions sre covei.ed.
Also, the different types of files and volumes are
pi.esented.

Second, the work file is inti`oduced. This is a
special ''scrstch pad" file that you may want to use
if you plsn to develop programs.

The filer is then introduced. The filer is the
p-System's major file handling facility. It sllows
you to view tlie files on a disk volume, move them
si`ound, remove them, and so forth. Its menu is
introduced. Also, a moi.e advanced festure called
wild cards is covei.ed. Wild cards may be used, in
conjunction with the filer's prompts, to work with
several files at one time.

TTie next section describes how you can attempt to
recover any f iles that you accidentally loose. If
you inadvertently remove a valusble file, for
example, the pi`ocedures outlined here should assist
you in retrieving it.

Subsidiary volumes sre covei.ed next. Subsidiary
volumes sUow you to have two levels of file
directory information. More files can be stored on
a disk if you use subsidiary volumes.

Oloo10l:03A 3-3

File Management

User-defined serial volumes are then introduced. If
your p-System is set up to use these, you can take
advantage of extra serisl 1/0 peripherals (such as
extra terminals or printers).

Fimlly, the filer activities are described in detail.

3-4 010010l:03A

File Management

FILE 0RGANIZATION

A file is a collection of information tliat is stored
on a disk and refe'renced by a file name. Each
disk contains a directory that has tlie name and
location of every file thst resides on it. A disk
directory may hold as many ss 77 files. If you
need more on single disk (which can essily be the
case if you ai`e using lsrge capscity hard disks),
you can use subsidiary volumes. (Subsidiary volumes
are described later in this chapter.)

A file may contain any sort of data and be
organized in many ways. Depending on the type of
file, which is usually indicated by the file name
suffix, the system treats it in specific ways. For
example, your files msy contain text such ss letters
and memos, or they may contain executsble code.
The p-System recogni7.es these dif ferences.

Disks (sometimes known as "storage volumes") have
''volume names." Sometimes disks are referenced by
"device number" (described later). The term
''volume lD" refei.s to s volume name or device
number of s given storage volume.

The filer is a progrsm that you start from the
Command menu. It provides a vai.iety of functions
that auow you to create, name and rename files,
remove them, transfer tliem around, print tliem, 8nd
so forth.

Oloo10l:03A 3-5

File Msmgement

File and Volume Names

Many filer prompts require you to respond with a
f ile or volume name. In fact, many p-System
prompts, in genersl, require this. Figure 3-1
inustrates the technical syntax for file names,
and Figure 3-2 shows the syntax for volume
names.

3-6

Figure 3-1. File Name Syntax

0100101:03A

File Mamgement

Figure 3-2. Volume ID Syntax

0100101:03A 3-7

File Mamgement

The legal characters that you may use for file
and volume names are:

• The alphabetic characters (A through Z)

• The numeric characters (0 through 9)

1 Hyphen (-)

Slash (/)

• Back slash (\)

• Underline (_)

1 Pel.iod (.)

Fne names can be, at most, 15 characters long.
Here are some valid examples of file names:

A . F I L E_NAM E:
MEMO.TEXT

PROGRAH/ 3 . CODE:

Hei.e are some INCORRECT examples:

A , BAD , NAM E

MOR£_THAN_15_CHARS
ls*6-(

3-8 0100101:03A

File Management

Volume names msy be, 8t most, seven charscters
in length and are fonowed by a colon. Here are
some correct examples:

VOLNAM E :

VOL_2 :
1234567:

Here are some INCORRECT volume names:

NOTCORB ECT :
V0 L $ 2 :
SAY : HI :

Volumes msy slso be referenced by ''device
number.'' A device number consists of s number
sign (#) followed by a number, usuauy fouowed
by a colon. Here are some examples:

The colon is optional unless the device number is
followed by a file name, as described below.
(The colon is required after a volume name,
however, to distinguish it from a fi]e name.)

0100101:03A 3-9

File Msnagement

Disk drives usually have the device numbers #4
and #5, and sometimes #.9, #10, #11, #12, and
even greater numbers. (Subsidiary volumes snd
"user-def ined serisl devices" may also use device
numbers #9 and higher.) When you refer to a
volume by device number, you are indicsting the
disk whicli happens to be in that drive at that
timeo

The asterisk (*) is shorthand for the volume ID
of the system disk. The colon (:) is shorthand
foi. the volume lD of the default disk (as
described below). The system disk and default
disk are equivalent unless the default prefix is
changed. You can change it with the P(refix
activity. Sometimes the system disk is also
caned the boot disk.

Lowercase letters are translated to uppei'case.

You msy indicate the volume on which a file
resides by using the volume nsme or device
number (with colon) followed by the file name.
Here are some examples:

MY . DI SK : MY . f l LE
DI SK 2 : MY . F I LE

14 : ANOTllER . TE:XT
I S : PROGRAH . CODE:
• BO0T . D I S K . F I LE:

3-10 0100101:03A

File Management

In the first two cases, the file MY.FILE is
indicated, but on two separate volumes. The
next two cases specify f iles on the disks in
drives #4 and #5. The final example indicstes a
file on the system disk.

If you don't indicate s volume ID to go with
your file name, that file is assumed to reside on
the default disk. If, for example, the default
disk is called ''MYDISK:" and you answer a file
name prompt with "A.FILE," the p-System assumes
(by "default") that you are referring to
''MYDISK:A.FILE.''

When a file is being created, its name may be
followed by a size specification having the form
'[n]', where n is an integer specifying the number
of blocks that the file must occupy. For
example, A.FILE.CODE[12] is made to occupy 12
blocks®

The fouowing items describe some special cases:

•[0]Equivalent to omitting the size
specification. The file is created in the
lai.gest unused srea.

• [*] The f ile is created in the second largest
area or hslf the largest area, whichever is
larger.

0100101:03A 3-11

File Management

File N&me Suffixes

User files are genei.ally one of thi`ee types:
program or document text, compiled or sssembled
program code, or data in s user-defined format.
The suffix of a f ile name ususlly indicates its
file type.

me following list summarizes the fne suffixes:

•TEXT Human readable text, formatted for
the editors.

•BACK Same as a text f ile. Used for backup
purposes.

•CODE Executable code, either p-code or
machine code.

.FOTO A file containing one graphic screen
image.

.BAD An unmovable file covering a
physically damaged tmea of a disk.

.SVOL A file containing a subsidiary volume.

Data files, which contain data in a useripecified
format, don't have any special suffix.

3-12 0100101:03A

File Mamgement

) tHheers: saurfef£xse°sTe example file names which use

.TEXT files contain human-readable information
such as letters, poems, documents and so forth.
.BACK files are backup files for text files.
.TEXT and .BACF_ files contain a header page
followed by the usei.-written text, interspersed
with a few special codes. The header page
contains interna] information for the editors.
The filer transfers the header page from disk to
disk, but never from disk to an output device
such as the PRINTER: or CONSOLE:.

All fnes created with a suffix of .TEXT have the
heQder attached to the front. They are treated
as text files throughout their lives.

The header page is two blocks long (1024 bytes),
with the remainder of the fi]e also orgsnized into
two-block pages. A page contains a series of
text lines, and is padded at the end with at least
one NUL chaLracter.

A . POEM . TEXT
DOCUM ENT . BACK
A_PROG . CODE
F]GURE1. FOTO
BAD . 0 0 0 4 2 . BAD
HYVOL . SVOL
A_DATA_F` I LE

010010ls03A 3-13

File Mamgement

Each line of text is terminated with an ASCII
CR. A line may begin with a blank-compression
pair which consists of an ASCII DLE fonowed by
a byte whose value is 32+n, where n is the
number of charactei.s to indent. Text lines are
typically 0 through 80 characters long to fit on
stsndsrd tei.minds.

.CODE files contain either compiled or assembled
code. They begin with a single block called the
segment dictionary, which contains internal
information for the operating system and linker.
Code files may also contain embedded
information. Refer to the UCSD

stem Pro rammer's Guide for detailed description
of code files.

.FOTO files hold a graphics screen image and are
used in conjunction with 'I\irtlegraphics.

SVOL files contain subsidiary volumes which are
discussed later in this chapter.

.BAD files are stationary f iles used to cover
physicauy damaged portions of Q disk.

All of the fner functions (except G(et and S(ave)

:#fixreesf.erenGC(eets¥:äfis(:';':ssruepqpu|i;eti::ef!:fFiax=:
automaticany to aid you in using the work file.

3-14 0100101:03A

File Mamgement

Devices and VoluDes

A volume is any 1/0 device, such as the printer,
the keyboard, or a disk. A storage device
(sometimes known as a ''blockitructuped" device)
is one that csn hQve a directory and files,
usually a disk of some sort. A communicstion
device (also known as a "nonblockstructured"
device) doesn't have internal structure; it simply
produces or consumes a stream of data. For
example, the printer and console are
communication devices.

Appendix C illustrates tlie reserved volume names
and device numbers used to reference the
standard communicstion and storage devices.

The system distinguishes between stoi.age and
communicstion devices. Storage devices are
usuany disk drives. They contain volumes that
have a directory and files. Internally, a volume
is organized into randomly accessib]e, fixediize
ai.eas of storage called blocks, each contsining
512 bytes. Files may vary in size, but are
always allocated an integral number of blocks.

Communication devices include printers,
keyboards, are remote lines. They have no
internal structure and deal with serial character
streams. Communication devices may perform
input functions, output functions, or both. (For
more details on configuring interfaces refer to the
manual UCSD p-S stem Guide to the Use on M20.

010010l :03A 3-15

File Management

A device or s file may be either a source of
data or a destination for data. Many of the
filer's data transfer operations apply to devices
as well as to files.

The nsme of a device that contains i.emovable
volumes, such as a floppy drive, is the name of
the volume it contains at any given time. The
number of that device never changes.

The name of a disk file includes, as a prefix, tlie
disk on wliich it resides. The system always has
one default prefix-when the system is first
booted it is the system disklo that you need
not type out the prefix every time a file is
required.

For example, SYSTEM:SAVEME.TEXT and
TABLES:SAVEME.TEXT name two different files
on two different disks (botli files are csned
SAVEME). These might also be specified as
#4:SAVEME.TEXT and #5:SAVEME.TEXT. If you
had changed the default prefix to TABLES:, then
entering SAVEME.TEXT would be understood to
mean TABLES:SAVEME.TEXT.

3-16 0100101:03A

File Management

010010l:03A 3-17

File Management

WORK FILES

TT`e work file is a scratch pad for creating and
testing files. The work f ile is often stored
temporsrily in *SYSTEM.WRK.TEXT and
*SYSTEM.WRK.CODE. These may be either newly
created files or copies of existing disk files that
have been desigmted as the work file.

Many system programs assume that you are woi.king
on the work file unless you specify otherwise. You
may create the work file by desigmting existing
files or by creating a new file with the editor.

Modifying the work file can cause temporsry copies
to be generated, which-until they are saved-ai.e
placed in the directory under the following names.

*SYSTEM.WRK.TEXT
*SYSTEM.WRK.CODE and
*SYSTEM.LST.TEXT

You can ci.eate *SYSTEM.WRK.TEXT by leaving the
editor if you use Q(uit U(pdate. Tlien a successful
compile or run creates *SYSTEM.WRK.CODE. If
the compilation is successful, the R(un commsnd
goes on to immedi&tely execute the code. The
compiler may optiomlly create *SYSTEM.LST.TEXT,
8 compiled listing.

Whenever the editor alters a program contsined in
*SYSTEM.WRK.TEXT, the R(un command recompiles
it in order to updste *SYSTEM.WRK.CODE.

3-18 0100101:03A

File Mamgement

The f iler can S(ave these f iles under permanent
names. You can also use it to designate a new
work f ile with the G(et command or to remove an
old one with the N(ew command. 'me f iler can
also tell you W(hat your work file's name is.

0100101:03A 3-19

File Mansgement

USING THE FILER

Piler Menus

With the Command menu displayed, press 'F' to
enter the F(iler. The system displays the
following menu.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T([ans, D(ace?

Enter '?'. The system then displays more filer
functions:

Filer; Q(uit, B(ad-blks, E(xt-dir, K(rnch, M(ake, P(ref ix, V(ols?

E.iler: X(amine, Z(ero, On/off-1ine, F(lip-swap/1oc.k

The individual filer functions are selected by
entering the letter found to the left of the
parenthesis. For example, 'S' would call the
S(ave function.

In the filer, answei.ing a Yes/No question with
any character other than 'Y' or 'y' constitutes a
no answer. Pressing <esc> retui.ns you to the
main F(i]er menu.

3-20 010010l:03A

File Management

Many octivities display a prompt asking for a file
or volume name. We have already discussed what
f ile and volume names are. You can, of course,
use a volume ID as part of a file name when
responding to these prompts. In some cases,
EITHER a fne or a volume may be indicated.

If you specify a file on a volume (or just a
volume) that the filer can't find, the system
displays the following message:

NAME: No such vol ori-1irie <sou[ce>

If two or more on-line volumes have the same
name, the filer continuously displays a wai.nirg.

NOTE: Although sometimes it may be necessary
to have two volumes with the same name on-line
at the same time, try to avoid this. You can
confuse the p-System and accidentally destroy
vduable information on one of the volumes!

Whenever a filer function requests s file
specification, you msy specify as many files as
desired by separsting the fne specifications with
commas and teriTiinating the file list with a
<return>. Commands operQting on single file
names read file names from the file list and
operate on them until none are left.

0100101:03A 3-21

File Management

Commands operating on two file names (such as
C(hsnge and T(ransfer) take file specificstions in
psirs and operate on each pair until only one or
none remains. If one fne name remains, the filer
displays a menu requesting the second member of
the psir. If an error is detected in the list, the
remainder of the list is flushed.

Wild Cards

Wild cards allow the filer to perform its task -on
several files at a time. There are three wild
card symböls: equal sign (=), question mark
(?), and dollar si9.n (S).

The equal sign and question mark are used to
specify subsets of the directory. The filer
performs the requested action on all fnes meeting
the specification.

The equal sign matches any string. For example:

= . T E:XT

matches all of the fonowing:

FILEl .TEXT
F I I,E 2 . TEXT
ANOTW BR . TEXT

3-22 Ol oo101=03A

File Msnagement

If a question mark is used in place of an equal
sign, the filer requests verification before
performing the function on escli file mstching the
wild card specified. For exsmple, if you want to
R(emove some, but not all text files on a disk,
you could use '?.TEXT' and you are prompted for
each file if you want it i.emoved.

A wild card specification must be of the form:

The first two cases, where there is no string to
match, is understood to specify every f ile on tlie
volume. So pressing '=' or '?' alone causes the
f iler to perform the appropriste action on evei.y
file in the directory. Only one wild card
character can occur in s specification.

The following pai.agraphs describe the use of the
filer with wild cards.

0100101:03A 3-23

File Mamgement

The following listing is tlie directory for volume
DISK1:.

TEMPI

OLD.TEXT
EXAMPLE1. CODE

EXAMPLE2 . CODE
TEMP2

TEMP . CODE

6 l-Jan-83
4 l-Jan-83

10 l-Jan-83
4 l-Jan-83
5 l-Jan-83
2 1-Jan-83

With the Command menu displayed, press 'F' to
call tlie F(iler. Then press 'R' to use the
R(emove option. The system will display the
following prompt:

Remove what f ile?

Enter 'TEMP=' press <return>.

The system then displays tlie fouowing listirg:

DISK1 :TEMP2 rem.oved
DISKl :TEMP.CODE removed
Update directory?

To verify and complete this operation, press 'Y'.
To stop the operation, press 'N'. If you press
'N', the files won't be removed.

3-24 0100101:03A

File Management

L'sing the same directory to list s specified set
of files, press 'F' (shown on the Command menu)
and then press 'L' to use the L(ist option. The
system will display the following prompt:

Di[listing of what `'ol ?

Enter '=TEXT' and press <return>. The system
wiu display the following listing:

OLD.TE;XT 4 l-Jan-83
NE:W.TEXT 12]-Jan-83

The subsetipecifying strings may not ovei`lap.
For example, EXAMPLE.C=CODE wouldn't' specify
the file EXAMPLE.CODE, whereas EXA=CODE
would be s valid specification.

In sny file name pair, you may use the chai.acter
'S' to signify the same file name as tlie first
name, perhaps with a different volume ID or size
specificstion.

P.r€ss 'F' (Command menu) 8nd then press 'T' to
select the T(rsnsfer option. The system will
display the following prompt:

Transfer what f ile?

0100101:03A 3-25

File Management

Enter '#5:RE.USE.TEXT,*.S' and press <return>.
The system now transfers the file RE.USE.TEXT
on device #5 (a disk drive) to the system disk
(*), which is also device #4. The name won't
be changed. The system will display the
following message:

WORKSET : RE . USE . TEXT->SYSTEM : RE . US£ . TEXT

3-26 Oloolo1:03A

Pile Msmgement

RECOVERING LOST FILES

When a fne is removed, it is actuslly removed from
the directory, not the disk. The information that
it contained remains on the disk until anotlier file
is written over it (which could happen at any time,
since the filer considers it usable space).

If a file is accidentally removed, be careful not to
perform any actions (whether from the system or
from your program) that write to the disk, since
they might write over the lost file. The K(runch
function is vii.tuauy certain to do this; 8void it.

With the Commsnd menu displayed, press 'F' to call
the F(iler and then press 'E' to use the E(xtended
list function. The E(xtended list function will
display the names of files in the directory snd any
unused blocks that msy r,ave once contained files.
Sometimes, by looking at the size of unused aress
and tlieir location in the directory, you can tell
where the lost file was locsted.

W'itli the F(iler menu displayed, press 'M' to use the
M(8ke function. You should then enter a file n&me
and the size in blocks (enclosed in brackets) of the
lost file®

To recover s lost file with tlie M(ake function, the
size specificstion should match the size of the file
that was lost. If you remember tlie size, or if the
löst file took up au the space between two files
that are still listed in the directory, recovery is
easy.

0100101=03A 3-27

File Management

The M(ake function creates a file (of the size that
you specify) at the beginning of the first svailable
location on the disk whicli is at least that large.
To fill up any unused (8nd unwanted) space that
precedes the location of the lost file, use the
M(ake function to create dummy files. (Later, you
may remove these ''filler" files.)

The following is an example of a listing made using
the E(xtend list function:

WORK :

SYSTE;M.MISCINFO 1 l-Jan-83 6 512 Dataf ile
< UNUSED > 1 7

SYSTEM.SYNTAX 14 l-Jan-83 8 512 Data£ile
REM.WRK.CODE 4 1-Jan-83 22 512 Codef ile
< UNUSED > 75 26
MYFII,E.TEXT 20 l-Jan-83 101 512 Textf ile
< UNUSED > 373 121

4/4 f iles<listed/in-di[>, 45 blocks iised, 449 uniised, 373 in largest

MYFILE.CODE was four blocks long and was
located just after MYFILE.TEXT. To create it,
press 'M' (F(iler menu) to use the M(ake function
and enter FILLER[75]. Tliis procedure fills up the
75 blocks of unused space on the disk. Next, using
the M(ake function, create a file with the following
specifications: MYFILE.CODE[4]. MYFILE.CODE is

&r¥eFa[tLeEd.TE(£¥?eF?ngaa£;}ui:|£:£%{:Lmyovef°#:cwti::
to delete FILLER from the directory.

3-28 010010l:03A

File Management

The following extended listing results from this
procedure.

WORK =

SYSTEM.MISCINFO 1 1-Jan-83
< UNUSED > 1

SYSTEM.SYNTAX 14 l-Jari-83
REM.WRK.CODE 4 l-Jan-83
< ÜNUSED > 75
M¥Fll,E..TE:XT 20 l-Jan-83
MYFILE.CODE 4 1-Jan-83

6 512 Dataf ile
7
8 512 Dataf ile

22 512 Codef ile
26

101 512 Textf ile
121 512 Codef ile

5/5 f ile§<listed/in-dir>, 49 blocks used, 445 unused, 369 in largest

NOTE: To X(ecute a code file, you must have
created it with a .CODE suffix. (Lster, you may
change the code file name.) If you lose a code
f ile that doesn't have a .CODE suffix (for example,
SYSTEM.FILER) you must reci.eate the file with a
.CODE suffix (for example, FILER.CODE) and tlien
again change the name back to SYSTEM.FILER. If
you don't do this, tlie recreated file won't be
executable.

TTie RECOVER utility, described in Chapter 5, can
help you find files when you can't i.emember or
determine where they were located on the disk.
RECOVER scsns the directory for entries that look
valid. If that sesrch doesn't yield the desired fne,
RECOVER sttempts to read the entire disk looking
for areas that resemble files and asks you if you
want then recreated.

Anotlier alternative is to use the PATCH utility to
msnually search through the disk. Once the file
has been found, use M(ake to create tlie proper
directory.

0100'101:03A 3-29

File Management

If a director}' entry seems erroneous or confusing,

.\'ou may use the PATCH utility to examine the
exact contents of the directory. (Refer to the
UCSD p-System Pro ram Development User Guide.)

Duplicate Directories

A duplicate directory can assist you in recovering
fi.om the situstion where the main directory has
been destroyed. The msin directory spans blocks
2 to 5 on a disk. If a duplicate directoi.y is
present, it sparis blocks 6 to 9. Every time the
directory is sltered, the duplicste directory is
updated as well, thus providing a convenient
backup. (A duplicate directory j!!gp!i help you if
you accidentally remove a file since the file is
removed from both directories at the same time.)

If a directory is corrupted on a disk that has a
duplicate directory, you may use the
COPYDUPDIR utility to simply move the
duplicate directory to the location of the
standard disk directory. Sometimes this is all
that is required to recover a disk.

There are two ways to place duplicate directories
on a disk. The f irst is to instruct the Z(ero
function to do this when you are initializing a
disk's directory. When the prompt 'Duplicate
dir?' appears, press 'Y' for yes. This prompt
also appears in the M(ake function when you are
creating subsidiary volumes. In this case, you
can create a duplicate directory for the
subsidiary volume if you wish.

3-30 0100101:03A

File Management

If you are already using a disk that contains orny
one directory, you can use the MARKDUPDIR
utility to ci.eate a dup]icate directory (without
having the zero the volume). However, be
careful when using tl`is utility. Blocks six to
nine of the disk-the locstion of the duplicate
directory-must be unused; if not, fne information
will be lost.

If a directoi.y is lost, and no duplicate directory
was present, use tlie RECOVER utility as
previously described.

CAU'ITON: You will destroy the directory if you
use the F(iler E(xtended list or L(ist functions
and specify an optioml output file as a disk
volume without a file name. (The listing is
written o-nTOTof the directory.)

EXAMPLE:

The L(ist directory prompts:

Dir listing of what vol ?

Response:

MYDISK:, MYDISK: <return>

Response:

MYDISK:,: <return>

0100101 :03A 3-31

File Management

Either of these responses cause the first few
blocks (aproximately 6) of MYDISK: to be
overwritten with a listing of the directory of
MYDISK:.

Response:

MYDISK:, DISK2:

This causes the directory of DISK2: to be
overwritten.

In the lattei. case, you must use the disk
recovery methods already desribed. In the first
two cases, recovery isn't so difficult, even if
there wasn't a duplicate directory, since the
MYDISK: directoi.y hss been overwritten with
whst is essentislly a copy of itself.

First, get a copy of the directory listing of
MYDISK:. (If MYDISK: was the system disk, you
must boot another system.) Use the filer to
T(ransfer 'MYDISK:' to the printer, like this:

Transfer what file? MYDISK:, PRINTER:

Generste hard copy of the directory snd then use
the filer to Z(ero MYDISK:. The Z(ei.o function
won't alter the contents of MYDISK:, only the
directory itself. Now use the M(ake function to
remske an of the fnes on the disk (as described
in the preceding paragraphs).

3-32 010010l:03A

File Management

SUBSIDIARY VOLUMES

'ITie purpose of subsidiary volumes is to provide two

levels of directory hierarchy and to expsnd the
p-System's ability to use large storage devices such
as Winchester disk drives. Currently, p-System disl{
volumes contain a. 4-block directory located in
blocks 2 through 5. Tlie i.est of the disk contains
the actual files described in the directory. 'me
size of the directory allows for s maximum of 77
files to reside on the corresponding disk image.

Subsidiary volumes are virtual disk images that
sctually reside within a standai.d p-System file.
The disk that contains one of these files is called
the principal volume. Each subsidiary volume may
contain up to 77 files.

A subsidiary volume appears in the directory of
principal volume as a file. Sübsidiary volume
names can have a maximum of seven characters
must be followed b`y the suffix ''.SVOL."
fonowing listing is an example.

MA I L . SVOI,
TBSTS .1 . Svol.
DOC_B . SVOL

0100101:03A 3-33

File Msmgement

The subsidiary volume disk image resides within the
actual .SVOL file. The directory format and file
formats are the same as for any other p-System
disk volume. The volume name of the subsidiary
volume is that portion of the corresponding file
name tlist precedes the ''.SVOL." For example, the
three preceding files Would contsin the following
subsidiary volumes:

MAIL:

TESTS .1 :
DOC_B :

CreQting and Accessing SVOLs

To create a subsidiary volume, use the. filer
M(ake function and the file name suffix, .SVOL.
As with any other f ile the M(ake f unction
creates, the subsidi&ry volume occupies:

1. All of tlie largest contiguous disk area if
created as follows:

Make w.hat f ile? DOCS.S\'OL

2. Half of the largest sres or all of the second
laLrgest area, whichever is larger, if crested as
fonows:

Make what f ile? DOCS.SVOLl.]

3-34 010010l:03A

File Mamgement

3. A specified number of blocks, in the first area
]c?:ga?edena%UFnh ti: f*&LodwitnhgatexFmagyes:b)°Cks. if

Make what f ile? DOCS.SVOL1200]
Make what file? DOCS.SVOL11500]

An .SVOL file must be made at least 11 blocks
long.

After you enter tlie .SVOL file name, the system
sometimes displays this prompt:

Zero subsidiary volume directory?

If you respond with a 'Y', the directoi.y of the
new subsidiary volume is zeroed. If you press an
'N', the directory isn't zeroed; and any fnes that
may have existed on a previous subsidiary volume
in the same location reappear within the
directory. In both cases, the number of blocks
indicated within tne directory always correspond
to the size of the actual .SVOL file. If this
prompt isn't displsyed, then there wasn't a
previous subsidiary volume directory where you
sre creating the current .SVOL file. In this
case, the new subsidiary volume is automaticslly
zeroed.

0100101 =03A 3-35

File Management

The next prompt which is slmost slways displayed
is:

Dupl!cate dir?

You should respond with 'Y' if you want a
duplicate directory to be maintsined on the
subsidiary volume, and 'N' otherwise. Duplicate
directories wei.e covered earlier under
"Recovering Lost Fnes."

Subsidiary volumes may not be nested. That is,
an .SVOL file may not be created within another
•SVOL file®

When you create a subsidiary volume, it is
automatically mounted unless the maximum number
of subsidiary volumes has already been mounted.
(Mounting and dismounting of subsidiary volumes
is desci.ibed in the next section.) You may then
access and use it like any otlier p-System volume.
The filer function, V(olumes, then displays a
listing whicli indicstes that the new volume is
on-line and shows its corresponding device
number; for example, #13:.

You may use either volume name or the device
number when referencing the subsidiary volume.
You may now place files on tlie new subsidiary
volume, and all of the spplicable file activities
may reference it.

3-36 0100101:03A

File Management

Mounting &nd DisDounting SVOLs

A mounted subsidiary volume is subtly different
from sn on-line subsidiary volume.

To identify a subsidiary volume as mounted
mesns that the p-System knows the volume
exists and sets aside a device number for it;
for example, #13:. You must mount a
subsidiary volume before you can use it. While
it is mounted, only that specif ic subsidiary
volume corresponds to that device number.

A subsidiary volume stays mounted until you
dismount ät. Once mounted, it is on-line any
time its pFincipal volum,e is in the disk drive.
It is off-line when the principal volume hss
been removed from t.he disk di`ive.

CAUHON: There is a danger of confusing the
system if two principal volumes each contain a
subsidiary volume in tlie same locstion with the
same name. This might easily be the case
where backup disks are used. If these
principal volumes are swspped in and out of
the same drive, and the similar subsidiary
volumes are accc`ssed, the fi]er may become
confused in the same way that it can when any
two on-line volumes have the same name.

010010l :03A 3-37

File Mamgement

CAUTI0N: If you write programs, be careful
when using low-level 1/0 routines (lilü
UNITWRITE) with subsidiary volumes. If you
remove a principal volume from a disk drive
and insei`t snother disk, these low-level
routines have no way of knowing that the
subsidiary volumes tliat wei.e mounted on the
original disk are no longer pi.esent. Under
these circumstsnces, doing a UNITWRITE to
sbsent subsidiary volumes will overwrite data
on the disk presently occupying the disk drive.

When you boot the p-System, all of the on-1ine
disks are searched for .SVOL files. The
corresponding subsidiary volumes are then
mounted. The same process occurs whenever
the p-System is initialized (by the I(nitialize
command or after an execution error).

The booting or initializing pi.ocess mounts as
many subsidiary volumes as it f inds as long as
there is room in the p-System unit table. If
the unit table becomes full, no more subsidiary
volumes are mounted; and no warning is given.
(The maximum number of subsidisry volumes is
discussed a little lster.)

After booting or initializing, if you place a
new physical disk on-line, you must msnuslly
mount sny subsidiary volumes contained on it if
you want to access them.

3-38 0100101:03A

File Mamgement

To mount or dismount subsidiary volumes, use
the O(n/off-line function. From the msin F(iler
menu, press '0'. The system will display the
following menu:

Subsidiary Vo]urrie: M(ount, D(isniount, C(lea[

Press 'M'. The system display this prompt:

Mount what vol ?

To dismount s subsidiary volume, press 'D'.
The system displays this prompt:

Dismount what vol ?

Suppose that s principal volume, P_VOL:,
contains the following files:

P_VOL :
Fl l.El . TEXT
F` I LE 1. CODE

VOL1. SVOL
FILE2.TEXT
F. I LE: 2 . COD E

DOC 1 . SVOL
-FUN-. SVOL

Oloolol:03A 3-39

File Mamgement

To mount subsidiary volumes on P VOL:, you
can i.espond to the mount prompt wTth the file
name, as in the following examples:

Moiint what volume? VOLl.SVOL<return>

Mount what vol ? VOLl.SVOL,-FUN-.SVOL<[eturn`

Mount what vcil ? P_VOL:=<return>

Mount what vol ? #5:=<return>

The first example mounts VOL1:, the second
mounts VOL1: and -FUN-:, the third mounts all
three subsidiary volumes on P VOL:, 8nd the
fourth example mounts all subsid-iary volumes on
the disk in di.ive #5:.

To dismount any of these volumes, you can
i.espond to the dismount prompt with the
VOLUME ID as in the following examples:

Dismoiint what vol ? #14:

Dismount what vol ? Vol,l:<[eturn`

Dismount what vol ? VOLl:, DOC1:, [`Utl':`retu[n,`

The first example dismounts the subsidiary
volume associated witli device number #14.
The second example dismounts VOL1:, and the
tliird example dismounts three subsidiary
volumes.

3-40 0100101:03A

File Msnsgement

The other item on the O(n/of f-line menu is
C(lear. When this is selected, £!| subsidiai.y
volumes are dismounted.

There is a maximum number of subsidiary
volumes that you msy mount st one time. You
can set this number, which is subject to
memory constraints and ti`adeoffs. The
msximum number of subsidisry volumes is s
field in SYSTEM.MISCINFO and is configured
using the SETUP utility.

NOTE: If you C(hange either the name of a
subsidiary volume or the name of the
corresponding .SVOL file, it is s good idea to
change them both to the same name. For
exsmple, if you want to chsnge either of
these:

MYVOL.SVOL
MYVOL:

You should C(henge both of them in tlie same
Wüy`.

NEWNAME.SVOL
NEWNAME:

If you don't do this, the .SVOL file and its
coi'responding subsidiary volume won't have the
same name which might be confusing.

0100101:03A 3-41

File Mamgement

NOTE: If you want to T(ransfer one subsidiary
volume to another, use the file-by-file method:

Transfer what file? SVOLl:=
To where? SVOL2:S

It j±EJi a good idea to do a volume-to-volume
T(i`ansfer.

NOTE: If you need to ektend the size of s
subsidiary volume, do not use the DISKSIZE
utility. You should M(-alkTe another subsidiary
volume the size you want and transfer the files
from the old subsidiary volume to the new one.

Installation lnformation

lt is very simple to install tlie subsidiary volume
facility if you use the SETUP utility to set MAX
NUMBER OF SUBSIDIARY VOLS to the smallest
convenient value. This will be the maximum
number of subsidiary volumes thst are allowed to
be mounted at one time. (Each additional
subsidiary volume requires a few extra bytes
within the p-System's unit table. This is why
you should keep this number as smsll as possible.)
Wrien you hsve set this field, the subsidiary
volume facility is available.

3-42 010010l:03A

File Mansgement

USER-DEPINED SERIAL DEVICES

The userriefined serial device facility allows you to
take advantage of special serial 1/0 hsrdwai.e
cspabilities. You csn use tliis facility, 8long with
the stsndard serial 1/0 devices (CONSOLE:,
REMIN:, 8nd REMOUT:), on some computers.

You msy have up to 16 user-defined sei.ial devices,
in addition to a printer, a console snd a remote
line. User-defined serial devices may include
addition81 printers, additional consoles,
communication iines between users in a multi-user
environment, and`so on.

This festure isn't avsilable with the adaptable
system BIOS.

You can use SETUP, described in Chapter 5, to
specify tlie number of user-def ined serial devices
that you will liave.

0100101:03A 3-43

File Mansgement: B(ad Blocks

FILER FUNCTI0NS

This section describes filer f unctions snd gives
exsmples of their use. Functions are listed in
alphabetical order with each new function beginning
on a new page.

3-44 0100101:03A

File Management: B(ad Blocks

B(Qd Blocks

On tlie menu: B(ad-blks

This f unction reads a volume's data blocks to
detect ai`eas that are apparently b&d for some
physical reason (magnetic damsge, fingerprints,
wai.ping, dirt, and so on).

This function requires you to enter a volume ID.
The specified volume must be oTrline.

Prompt:

Bad bloc'k scan of vhat vol?

Response:

<volume ID>

Prompt:

Scan fo[320 block6 ? <y/n>

Enter 'Y' for yes to scQn for the entire length
of the disk. To check a smaller portion of
the disk, press 'N'. The §ystem will then
display a prompt requesting the number of
blocks which the filer should scan.

0100101:03A 3-45

File Mamgement: B(&d Blocks

The system checks each block on the indicated
volume for errors and lists the number of each
bad block. Bsd blocks can sometimes be fixed or
marked (see X(8mine).

3-46 0100101:03A

File Management: C(hange

C(hange

On trie Menu: C(hng

TTiis function clianges file or volume names.

C(hange requires two names. The first name
specifies the file or volume name to be changed,
the second entry specif ies the name it is to be
changed to. The first entry is separated from
the second entry by either a <return> or a
comm (,). Any volume name information in
the second fne specificstion is ignored since only
the name in the volume directory is changed.
Size specification information is also ignored.

The following example shows how to change file
or volume names. The example f ile F5.TEXT
resides on the volume occupying device #5:

PI.Ompt:

C(hange what f ile?

Response:

15 : F 5 . TEXT , NEWNAME

0100101:03A 3-47

File Mamgement: C(hange

The preceding procedure changes the name in the
directory from 'F5.TEXT' to 'NEWNAME'. File
types are originany determined by the file name,
however, the C(hange function doesn't affect the
file type. In the above case, NEWNAME is still
a text file.

On the other hand, a i`esponse of

15 : F 5= , NEWN"E=

preserves the .TEXT suffix.

Wild card specif ications are legal in the C(hange
function. If you use a wild card character in
the first file specification, then you must use a
wild card in the second f ile specif ication. The
subsetipecifying strings in the first file
specification are replaced by the analogous
strings (called replacement strings) given in the
second fne specification.

TTie filer won't change the file name if the
change would make the new f ile name too longi
that is, mope than 15 chQracters.

3-48 0100101:03A

File Mamgement: C(hange

EXAMPLE:

Given a directory of example disk DISK1:,
containing the following files:

EXAMPLE . TEXT
MAIL.TEXT
MA l l, . CODE
mi(E.TEXT

Prompt:

DI SK 1 : MA=TEXT< [et u r n >

Prompt:

Change to what?

Xk=WHAT

This causes the filer to report:

DISKl :MAII-.TEXT --> XXII..Wl]AT
DlsKl:»AKE.TEXT --> xxf{E:.mAT

0100101:03A 3-49

File Management: C(hange

The subsetipecifying strings may be empty, as
mQy the replacement strings. The fner considers
the file specification equQl sign (=) (where both
subsetipecifying strings are empty) to specify
every file on the disk. Responding to the
C(hange ppompt with '=,Z=Z' causes every file
name on the disk to have a 'Z' added at the
fi.ont and back. Responding to tl`e prompt with
'Z=Z,=' replaces each tepminal and initial `Z' with
nothing.

EXAMPLE:

Given the file names:

THIS.TEXT
TllAT.TEXT

Prompt:

Change what f ile?

Response:

T=T , =

The pesult would be to chahge 'THIS.TEXT' to
'HIS.TEX', and 'THAT.TEXT' to 'HAT.TEX'.

3-50 Ol oo101:03Ä

File Management: C(hange

You may also change the volume name by
specifying s volume ID to be clianged and a new
volume ID.

EXAMPLE:

Prompt:

Change what f ile?

RespoTBe:

DISKl : ,DISK2:

Causes the fner to report:

DISKl: --> DISK2:

010010ls03A 3-51

File Management: D(ate

D(ate

On the m,enu: D(ate

This function lists tlie curi.ent p-System date and
enab]es you to change it if you want.

P[ompt: Date Set:<l..3l>-<JAN..DE:C>-`00..99>
Today is 1-Jan-83
New date?

You msy enter the correct date in the format
given. After pressing <retui.n>, the new dste is
displayed. Pressing only a return doesn't affect
the current date. The hyphens are delimiters for
the day, month, and year fields; allowing you to
affect oriy one or two of these fields.

For example, you can change only the year by
entering '--83', only the month by entering
'- Jan', and so on. You can spell out the name
of the month entirely, but the filer will truncate
it.

The most common input is a single number, which
is interpreted as a new day. For example, if the
date shown is the lst of January, and today is
the 2nd, you enter '2<retum>'; this procedure
changes the date to the 2nd of January. The
day-month-year order is required.

3-52 010010l:03A

File Mamgement: D(ate

The p-System's date is associated with any files
which are created or modif ied during the current
session. Thus, the individual f nes may have
different dates. These dates are displ.ayed when
the directory is Hsted.

The p-System's date is saved in the directory of
the system disk. The date remains the same
until you change it by using the D(ate function.

NOTEs Some pTsystem application program are
designed to examine and/or change the system
date, either from you input, as with the fner, or
automatically from battery operated clcw!ks wliich
are avanable with some machines.

Oloo101=03A 3-53

File Msnagement: E(xtended List

E(xtended List

On the menu: E(xt-dir

This f unction lists the directory in more detsil
than the L(dir function. (See L(dir for more
information.)

All fi]es are listed with their block length, last
modificstion date, the starting block address, the
number of bytes in tlie last block of the fne, and
the f ile type. The unused areas are slso
displayed. All wild card options and prompts sre
used in tlie same way as the L(dir function.

Since this function shows the complete layout of
f iles and unused spsce on the disk, jt is useful in
conjunction with the M(ake function. (You can
see wliere files may be created.)

Often, an E(xtended list is too long to fit on one
screen. In this csse, tlie filer displays one full
screen and then prompts:

Type <space> to continue

You should press <space> to list the rest of the
directory. Press <esc> to abort the listing.

3-54 0100101:03A

File Management: E(xtended List

EXAMPLE:

Here is a sample extended listing:

MYDISK:

flLERDOC2.TEXT 28 l-Jan-83
MEMO.CODE 18 1-Jan-83
<UNUSED> 10

4 l-Jan-83
12 1-Jan-83

8 l-Jan-83
18 l-Jan-83
20 l-Jan-83
24 1-Jan-83

Ol ool o1:03A

Textflle
Code£ i le

Da taf i le
Codefile
Textfile
Te x t f i 1 e
Textfile
Textfile

Codef i le

ks used, 356 unused, 200 in largest

3-55

File Mamgement: F(lip sw&p/lock

F(lip Swap/Lock

On the menu: F(lip swapAock

This function can facilitate the use of the filer
on systems that have enough memory.

The Pascal code that makes up the f iler is
divided into several segments. Not all of the
segments are needed in main memory st the same
time. By removing unneccessary segmerits from
memory, moi.e memory space is available for the
filer to perfc`rm its tasks. For example, 8
ti`ansfer is much more efficient when there is a
large buffer ai.ea available in memory.
Furthermoi.e, on some machines, thei.e just isn't
enough memory space to contain the entire filer.

However, allowing the filer to have nonresident
segments requires tliat the disk containing
SYSTEM.FILER be accessed whenever a
nonresident segment is needed. This can be
inconvenient on two-drive systems. It is more
convenient to do the following: Enter the filer,
i.emove the system disk, if desired, and perform
any combination of L(isting, disk-toriisl{
T(ransfei.ring, K(runching, and so on, without
having to replace the system disk at frequent
intervsls.

3-56 0100101 :03A

File Msnsgement: F(lip swap/lock

In the first mode, the fi]er segments are
memswapped; and in the second mode, they are
memlocked. The F(lip swap^ock function auows
you to choose the mode the filer will use. Upon
entering tlie filer, the initial stste is slways tlie
memswapped state. Pressing 'F' acts as a toggle
between the memswspped snd memlocked states.

For example, if you enter the filei. 8nd press 'F'
twice, the system displays two messages similar
to these:

Filer segments memlocked 19845 vords}
filer segrnents s`'appable 113918 words}

The nurriber of availsble 16-bit words is given so
that you will have an idea of how much spsce is
left for the filer to perform its functions. There
is usually less spsce avsilable in the memlocked
mode. If the machine doesn't have enough space
to memlock the filer segments, you receive s
message indicating so. (If there aren't at least
1500 extrs wor'ds available, the filer won't allow
the memlock option.)

0100101:03A 3-57

File Mamgement: G(et

G(et

On the menu: G(et

This function desigmtes a text and/or code file
as the work file.

The entii.e file specification isn't necessary.
the volume ID isn't given, the default disk
assumed. Wnd csrds aren't allowed, and tlie size
specification option is ignored.

EXAMPLE:

Given the directory:

Prom['t:

Get what f ile?

Response:

PROG

3-58 010 0101 : 03A

File Mamgement: G(et

The filer responds with the following message
becsuse both text and code files exist.

If you enter 'PROG.TEXT' or 'PROG.CODE', the
result is the same. Both text and code versions
are loaded. If only one of tlie vei.sions exists, as
in the case of MEMO, then thst vei.sion is
loaded, regai`dless of whether you requested text
or code. For example, entering 'MEMO.CODE' in
response to the prompt generates tlie message:
'Text file loaded'.

Using the compiler, editoi`, 8ssembler on a work
file may cause the files SYSTEM.WRK.TEXT
and/oi. SYSTEM.WRK.CODE to be crested ss part
of the work file. The SYSTEM.WRK files
disappear when you use the S(ave function. If
you reboot the p-System befoi.e using the S(ave
function, the p-System forgets the name of tlie
woi.k file. In this csse, the p-System doesn't
know what files the SYSTEM.WRK files wei`e
derivec' from.

0100101:03A 3-59

File Mamgement: K(runch

K(runcl]

On the menu: K(rnch

This function moves the files on a volume
togetlier so thst the unused space is consolidated
into one large area.

K(runch first displays a prompt ssking for the
name of a volume. It then asks if it should
move the files from the end of the volume
toward the beginning. If you answer yes to this
question, K(runcli leaves all files st the front of
the volume, and one lsrge unused area st the
end. If you answer no to this prompt, K(runch
asks at which block the file movement should
start. Doing a K(runch from s block in the
middle of the volume lesves a large unused area
in the middle of the volume, with files clustered
toward either end (as space permits). Doing a
K(runch from the beginning of a volume lesves
the fi]es at the end and the unused space st the
be8inning.

As each file is moved, its name is displsyed on
the console.

If the volume contains a bad block that hasn't
been marked (see B(ad snd X(amine), K(runch may
move a valuable file on top of it. That file is
then beyond recovery. You should scan for bad
blocks with the B(ad function before using the
K(runch function unless all f iles are also backed
up on a different volume.

3-60 0100101:03A

Fne Management: K(runch

If the K(runch function must move
SYSTEM.PASCAL or SYSTEM.FILER on the
system disk, it then displays a prompt which asks
you to reboot the system.

EXAMPLE:

Prompt:

Crunch what vol?

Response:

MYDI SK :

If MYDISR-: is on-line, K(runch displays a prompt
simnar to. this:

f[om end of disk, block 320 ? (}-/n)

The ''320" indicstes the last block on your volume
and niay be different for your disks. To start
the K(runch, from tliis location, press 'Y'. To
start tlie K(runch st another location, press 'N'
8nd this is displsyed:

Sta[ting at block . ?

Enter tlie block number Qt which the K(runch
should begin.

010010l:03A 3-61

File Mamgement: E(runch

The contents of subsidiary volumes cQn be
K(runched just like any other volume.

3-62 0100101:03A

File Management: L(ist Directory

L(ist Directory

On the menu: L(dir

This function lists the files in s disk directory or
some subset of them. Ususlly, the listing is
displayed on the co"5ole, but you can direct it to
a file or to s communicstions device, such as
PRINTER:.

Each file name is fouowed by the file lengtli, in
blocks (8 block is 512 bytes), and the date of its
last modif ication.

When you select L(ist directory, this prompt is
displayed:

Dir listing of what vol?

You csn respond to this with a storage volume
name. The Girectory of this volume is then
listed. If you want, you can fouow the volume
nsme with a file nan.ie or wild cai.d expression
for multiple file names. In this case, the single
file or the subset of the directory indicated by
the wnd card expression is listed.

You can, if you want, send tlie listing to a
communications volume (such as PRINTER:) or a
file (sucli as LIST.TEXT). To do this, use s
comma after you indicste the volume to be
listed. Following the comma, enter the
destination for the listing.

0100101:03A 3-63

File Mamgement: L(ist Directory

lf the directory listed is too long to fit on one
screen, the filer lists as much of it as it can and
then displays the following prompt:

Type <space> to continue

Pressing <space> causes the i.est of the directoi.y
to be listed; pi.essing <esc> halts sny furtlier
listin8.

3-64 010010l:03A

File Mansgement: L(ist Directory

EXAMPLE:

To list MYDISK:, select L(ist directory snd
respond like this:

Prompt:

Dir listing of what vol?

Response:

MYDI SK :

Here is the listing of MYDISK:

Dir listing of what vol?

FILE:kl.TEXT 38 l-Jan-83
PRINT.CODE S l-Jan-83
FILE2.TEXT 22 l-Jan-83
ME:MO.TE:XT 30 1-Jan-83
FILE3.TEXT 25 l-Jan-83
5/S files <listed/in-dir>, 120 blocks used, 100 unused, 100 in largest

The bottom line of the displsy informs you that:
5 files out of 5 files on the disk hsve been
listed, 120 blocks have been used, 100 blocks
i.emain unused, and the largest ares available is
100 blocks.

Ol oo101 = 03A 3-65

File Management: L(ist Directory

The following example is s list directory
transaction involving wild Qards:

Prompt:

Dir listing of what vol ?

Response:

MYDI SK : F I L=TEXT

The system displsys the following listing:

MYDI S K :

flLE1.TE:XT 38 1-Jan-83
flLE2.TEXT 22 l-Jdn-83
FILE:3.TEXT 2S l-Jan-83
2/5 files `1isted/in-di[>, 85 blocks used,100 unused,100 in largest

The following example is s list directory
ti`ansaction that involves writing the directory
subset to a device otlier than CONSOLE.

Prompt=

Dir listing of what vol ?

Response:

3-66 Oloo101:03A

File Mamgement: L(ist Directory

The system prints the following listing:

MYDI Sl(:

F`ILEl.TEXT 38 l-Jan-83
FILE;2.TEXT 22 1-Jan-83
FILE3.TEXT 25 l-Jan-83
2/5 f i]es <listed/in-dir>, 8S blocks used,100 unused, 100 in largest

EXAMPLE:

The following example is a list directory
transsction thst involves writing the directory
subset to a fne:

Prompt:

Dir l}sting of what vol ?

Response:

MYDI SK : [' I L=T£XT , I 5 : 1,] ST . TEXT

The system ci.eQtes the file LIST.TEXT on the
disk in drive #5. LIST.TEXT contains this
listin8:

MYDISK:

flLLl.TEXT 38 l-Jan-83
[`ll,E2.TE:XT 22 l-Jan-83
fli,[3.TEXT 25 l-Jan-83
2/5 files .list..d/in-dir`, 85 bloc.ks usc.d,100 unused,100 in largest

Ol ool ol :03A 3-67

File Management: H(ake

M(ake

On the menu: M(8ke

This function crestes a directoi.y entry with the
specified f ile nsme.

M(ake requires you to enter a file name. Wild
csrd chsracters aren't sllowed. The file size
specification option is extremely helpful because
it allows you to determine the size of the file
you are cresting. If you omit the size
specification, the filer creates the file by
consuming the lsrgest unused area of the disk.
The file size is determined by following the file
name with the desired number of blocks, enclosed
in square bi.ackets ([]). The file size
specificstion was described under ''File snd
Volume Names'' earlier.

Text files must be an even number of blocks with
the smallest possible text f ile four blocks long
(two for the headei`, and two for text). M(ake
enforces these restrictions; if you try to M(8ke a
text file witli an odd number of blocks, M(8ke
rounds the number down.

M(al<e csn be used to create a file (with no
initialized data) for future use, to extend the
size of a file (using the size specification), or to
recover a lost file.

3-68 0100101:03A

File Management: M(ake

EXAMPLE:

Prompt:

Make what f ile?

Response:

MYDI SX : FI LE . TE:XT 12 8 l

The preceding procedure creates the file
FILE.TEXT on the volume MYDISK:. It is made
to be 28 blocks long to occupy the first unused
28-block area on the volume.

M(ake is used to create SVOL f iles which
contain sübsidiary volumes. For more informaton
about this, see the section, "Subsidiary Volumes."

Oloo101:03A 3-69

File Mamgement: N(ew

N(e,

On the menu: N(ew

This function clears the work f ile.

lf you hsve a work file, the system displays this
prompt:

Th[ow away current wo[k f ile?

Entering 'Y' clears the woi.k file, while 'N'
retui.ns you to trie outer level of tlie filei..

If <work file name>.BACK exists, tlien tlie system
displays the following prompt:

Rem,ove <*ork £ile name>.BACK ?

Entei'ing 'Y' removes the file in question, while
'N' leaves the .BACK file alone, but does create
a new work fne.

When N(ew is successful, the system displQys this
messsge:

Wo[kf ile clea[ed

3-70 010010l:03A

File Mamgement: O(n/off-line

O(n/off-1ine

On the menu: O(n/off-line

This function mounts or dismounts subsidiary
volumes.

Witli the filer menu displsyed, press '0'. TT`e
system displays the fouowing menu:

Subsidiary Volum,e: M(ount, D(ismount, C(lear

Press 'M'. The system displsys tlie following
prompt:

Mount what vol ?

To dismount a subsidiary volume, press 'D'. The
system displays the following prompt:

Dismount what vol ?

To dismount an the subsidiary volumes, press 'C'.
The system immediately dismounts all the
subsidiary volumes that are currently mounted.

0100101:03A 3-71

File Management: O(n/off-line

Suppose that a principal volume, P_VOL:, contsins
the following files and thst the pref ix is set to
P VOL.

P_VO L :
FILE1.TEXT
F I L E 1. CODE:

VOLl . SVOL
FILE2.TEXT
flLE2.CODE
DOC 1. SVOL

FUN . SVOL

To mount subsidiary volumes on P VOL:, you csn
respond to tlie mount prompt witl-i-the file name
of the .SVOL file as in the following exsmples.

Mount what vol ? VOL1.SVOL`[etu[n>

Mount what vol ? VOLl.SVOL,FUN.SVOL`[eturn`

Mount what vol ? P_VOL:=<return`

Moiint what vol ? 15:=<[etu[n`

The first exsmple rriounts VOL1:; the second
mounts VOL1: and FUN:; the third mounts all
three subsidiary volumes on P VOL:; and the
fourth example mounts sll subsi-diary volumes on
the disk in drive #5:.

3-72 0100101:03A

File Management: 0(n/off-line

To dismount any of tliese volumes, you can
respond to the dismount prompt with the Volume
ID as in the following examp]es.

Dismount what vol ? 114:

Dismourit what vol ? VOL1:<return>

Dismount what vol ? VOLl:, DOcl:, FUN:<returi`>

The first example dismounts the subsidiary volume
associated with the device number #14. Tlie
second example dismounts VOL1:, and the third
example dismounts three subsidiary volumes.

NOTE: When mounting a subsidiary volume,
represent it as a file name (VOL1.SVOL). When
dismounting a subsidisry volume, represent it as a
volume name (VOL1:).

Foi. more informstion about subsidiary volumes,
sce tlie subsidiary volume section earlier in this
chapter.

.0100101=03A 3-73

File Management: P(refix

P(refix

On tl`e menu: P(refix

This function changes the current default volume
to the volume that you spcify.

This function requires you to enter a volume
n&me or device number. The specified volume
need not be on-line.

If you specify a device number (such as #5), then
the new default prefix is the name of the volume
in that device. If no volume is in the device
when prefix is used, the defsult prefix remains
the device number (such as #5); thereafter, any
volume in the default device is the default
volume®

Since P(refix tells you the volume name of the
new default volume, you may respond to its
prompt witli a (:) to determine the current
default volume's name. To return the prefix to
the booted or root volume, you may respond with
sn ssterisk (*).

To use tliis command, select P(refix and the
following prompt will be displayed:

P[ef ix titles by what vol?

You should enter the desired volume name or
device number.

3-74 010010l:03A

File Management: P(refix

CAUTION: When using only a device number for
the prefix, remember that 8ny disk in the device
is tlie default disk. In this situation, it is very
essy to assume that the system is pi`efixed to a
particular disk, exchange the disks, and write
over s vsluable file or destroy informstion.

0100101:03A 3-75

File Mamgement: Q(uit

Q(uit

On the menu: Q(uit

This function terminates the filer and returns you
io the Command menu.

3-76 0100101:03A

File Msmgement: R(emove

R(emove

On the menu: R(em

This function removes file entries from the
directory.

R(emove requires one file specification for eacli
f ile you wish to remove. Wild csrds are legal.
Size specificstion informstion is ignored.

EXAMPLE:

Given the example files (assuming tliat they sre
on the default volume):

EX"PLE.TEXT
COPYIT.CODE
MBMO.TEXT

RUNIT;CODE

Prompt:

Remove what f ile?

Response:

RUNIT.CODE

Removes the file RUNIT.CODE from the volume
directory.

0100101s03A 3-77

File Mamgement: R(emove

NOTE: To remove SYSTEM.WRK.TEXT and/or
SYSTEM.WRK.CODE, use the N(ew function; not
R(emove. Using R(emove may confuse the
system.

Befoi.e finalizing any removsls, the filer displays
the fouowing pi.ompt:

Prompt:

Update directory?

Entering 'Y' causes all specified files to be
removed. 'N' returns you to the outer level
of the filer witliout removing any files.

As noted before, wild cards in R(emove
sctivities are iegai.

EXAMPLE:

PI.Ompt:

Remove what f ile?

Response:

=CODE

Causes the filer to remove RUNIT.CODE and
COPYIT.CODE.

3-78 0100101:03A

File Management: R(emove

Pressing the wild card question mark (?)

3::äepst qtuheest igi:nmgo!fe i:#vi:,n .f oea:isp#ey .:
8 volume. This is useful for clesning out a
directoi.y and for removing a file tliat has
(inadvertently) been created with a nonprinting
or otherwise invalid cliaracter in its name.

WARNING: Remember that the filer considers
an equal sign (=) by itself to specify every
füe on the volume. Pressing an equal sign
alone causes the filer to remove every file on
the directory. (To escspe from this situation,
press 'N' in i.esponse to the 'Update
directory?' prompt.)

0100101 :03A 3-79

File Mamgement: S(ave

S(aye

On the menu: S(ave

TTiis function saves the work file under tlie file
name you specify.

The entire file specification isn't necessary.
the volume ID isn't given, the default disk
8ssum.ed. Wnd cards aren't allowed, and the size
specification option is ignored.

EXAMPLE:.

Prompt:

Save as VOLNAME: FILENAME?

The first prompt appears if you woi.k fne was
derived from an existing file. It asks you if
you want to save it under the old file name.
Press 'Y' if you do, and 'N' otherwise.

The second prompt appears if your work file
was created from scrstch, or if you respond
'N' to the first prompt.

3-80 0100101:03A

File Management: S(ave

Enter s file name of ten characters or less.
This causes the f iler to automatically remove
sny old file hsving the given name and to save
the work file under that name. For example,
pressing 'X' in response to the pi`ompt csuses
the work file to be saved on tlie default disk
as X.TEXT. If s code file has been compiled
since the last update of the work file, that
code file is saved as X.CODE.

The filer automatically sppends the suffixes
.TEXT snd .CODE to files of the sppropriste
type. If. you enter AFILE.TEXT in response to
the prompt, the filer saves the file as
AFILE.TEXT.TEXT. The filer ignores sny
illegsl characters in tlie file nsme, except
colon (:). If the file specificstion includes a
volume ID, tlie filer assumes that you wisli to
save the work file on another volume.

For example, if in response to tlie filer pi`ompt
'Save as what fne?', you enter 'VOLl:FILEl',
the system then displsys the fouowing message:

MYI)I SK : SYST£M . WRX . T£XT-->VOLl : f 1 LE 1. T£XT

0100101:03A 3-81

File Mamgement: T(ransfer

T(rsnsfer

On the Menu: T(rans

This f unction copies the specified f ile or volume
to the given destination.

T(ransfer requires you to enter two
specifications: one for the source f ile or volume
and snother for the destination file or volume,
separated by either a comma or ¢eturn>. Wild
cards are permitted in file nsme specifications
only. Size specification informstion is recognized
for the destination file. If you include a size
specification, the f ile is placed in the first
unused area on the disk which is at least as
large as the size specification indicstes.

3-82 Oloo10l:03A

File Mansgement: T(ransfer

EXAMPLE:

Assume that you wish to transfer the file
DOCLl.TEXT from the disk MYDISK to tlie disk
BACKUP.

Prompt:

Transfer what f ile ?

Response:

MYI)I SK : DOCU . TEXT

Prompt:

To where?

Response;

BACKUP : NAM E . TEXT

0100101=03A 3-83

File Management: T(ransfer

NOTE: On a one-drive machine, don't remove
the source disk until the system displsys thst
prompt asking you to insert the destination disk.

Prompt:

Put in BACKUP: press <space>. to c`ontinue

You should remove the source disl{, insert the
destination disk, and press <space>.

In any csse, when the T(ransfer is complete, the
filer displays this message:

MYD I SK : DOCU . TEXT--> BAC KU P : NAM E: . TE:XT

You may want to transfer a fne without changing
its name. The filer enables you to do this easily
by auowing tlie character dollar sign (S) to
replace the file name in the destination file
specification. In the above example, had you
wished to save the file DOCU.TEXT on BACKUP
under the name DOCU.TEXT, you could have
done so like this.

MYDI SK : DOCÜ . TEXT , BACKUP : S

3-84 0100101:03A

File Mamgement: T(ransfer

WARNING: Avoid entering the second file
specificstion with the file name completely
omitted.

For exsmple, if in response to the T(ransfer
function prompt, 'TTansfer whst file', you respond
with MYDISK:DOCU.TEXT,BACKUP:, the system
wiu displsy the following pi`ompt.

Destroy BACXUP: ?

A 'Y' 8nswer causes the directory of BACKUP:
to be destroyed.

NOTE: If tl`e file to be transfei.red is
blocks long or les§, the system won't display
warning prompt. The fne is transfei.red to
area where the bootstrap normally resides
front of the disk's directory).

You may transfer files to volumes thst si.en't
storage volumes, such as CONSOLE: 8nd
PRINTER:, by specifying the sppropriate volume
ID (see Appendix A) in the destination file
specification. Don't specify a ffle name for s
communication de.vice. The system will ignoi.e it.
Make sure the device is on-line before the
transfer.

010010l:03A 3-85

File Management: T(ransfer

EXAMPLE:

Prompt:

Transfer what f ile?

Response:

DOCU.TE:XT

Prompt:

To where?

Response:

PRINTER:

~

The preceding procedure causes DÖCU.TEXT to
be written to the printer.

You may also transfer from storage devices,
provided they are input devices. The soüce file
must end with an <eof> (which is a ''soft
character" configurable using the SETUP utility);
otherwise, the filer won't know when to stop
trsnsferring. File names accompanying a
communication device are ignoi.ed.

3-86 010010l:03A

File Mamgement: T(ransfer

Wild cards are recognized in the T(ransfer
function. If the source file specification contains
a wild card character, and the destinstion file
specification involves a storage device, then the
destination file specificstion must also contain a
wild card clisracter.

The subset-specifying strings in the source file
specificstion are replaced by the amlogous
strings in tne destination file specification
(replaeement strings). Any of the
subset-specifying or replacement strings may be
empty. The filer cgnsiders tlie file specificstions
equal sign (=) or question mark (?) to specify
every file on the volume.

#-` ``
4 -_ ,'

0100101:03A 3-87

File Management: T(ransfer

EXAMPLE:

The volume MYDISK contains the files:

PODA-l, PODB-l, PODC-1

The destination disk is SUCCESS.

Prompt:

Transfer what f ile?

Response:

P=-1, SUCCESS : M=2

The system then displays the fouowing listing:

MYDISX:PODA-1 --> SUCCESS:MODA-2
MYDISK:PODB-l --> SUCCE:SS:MODB-2
MYDISK:PODC-l --> SÜCCESS:MODC~2

The f iler will try to transfer every file on the
disk if you specif y the equal sign (=) as the
source file name.

3-88 Oloo101:03A

File Mamgement: T(ransfer

Using the equal sign (=) as the destination file

g:rT:gssp£encj:Lceat:::r::p:%ceec:f£tchoetj::bs;jttfpeh:jtfhy££nngE
You may use tlie question mark (?) in place of
the equel sign. Using the question .mark, you
will be asked to verify each operation before it
is performed.

You may transfer a file from s volume to the
same volume by specifying the same volume ID
for both soui.ce and destination file
specifications. Tliis is frequently useful when
you wish .to re]ocste a file on the disk.
Specifying the number of blocks desired causes
the filer to copy the file in the first available
area of at least that size. If you don't specify
a size, the file is written in the largest unused
area,

If you specify the same file nQme for botti source
and destination on a sameiisk transfer, the filer
rewrites the file to the sizeipecified area and
removes the older copy-without changing the
file's size.

EXAMPLE:

Prompt:

Transfer what f ile?

Response:

I 4 : QU I Z ZES . T£XT , I 4 : Ql;' I Z Z ES . TE:XT 12 01

0100101 :03A 3-89

File Mamgement: T(ransfer

The preceding pi.ocedure causes the filer to
rewrite QUIZZES.TEXT in `the first 20-block area
encountered (counting from block 0) and to
remove the previous version of QUIZZES.TEXT.

You can also tpansfe-r sn entire volume from one
disk to another. The file specifications for both
soui.ce and destination should consist of only
volume ID; for example, DISK1:, DISK2:.
Trsnsferring a storage volume to another storage
volume wipes out the destination volume so that
it becomes an exact copy, including `directory, of
the source volume.

NOTE: Some disks have areas which aren't
accessible by the system. The filer.can't
transfer those apeas. Bootstraps, in particular,
may have to be transferred with the utility
BOOTER.

3-90 Oloo101s03A

File Msnagement: T(ransfer

EXAMPLE:

Assume that you want sn extra copy of the disk
MYDISK: and trsnsfer to a disk called EXTRA:

Prompt:

Transfer what f ile?

Response:

Prompt:

Destroy EXTRA: ?

WARNING: If you enter 'Y', the directory of
EXTRA: will be desti.oyed, with EXTRA:
becoming an exact copy of MYDISK:. An 'N'
i.esponse returns you to the outer level of the
filer with no transfer tsking plsce.

This volume-to-volume trsnsfer process is a good
backup procedure. Use the C(hsnge f unction to
change the name of the backup disk. The two
disks shouldn't have the same name because this
may confuse the system.

0100101:03A 3-91

File Mamgement: T(ransfer

Although you can trsnsfer a volume (disk) to
another, using a single disk drive, it is tedious.
This is becsuse the transfei. in main memory
reads the information in rather small chunks, and
a great deal of disk juggling is necessary to
complete the transfer.

3-92 0100101:03A

File Mansgement: V(olumes

V(olull]es

On the menu: V(ols

This function lists volumes currently on-line witli
their Qssociated volume (device) numbers.

The fonowing listing is a typical displsy.

Vols on-1ine:
1 CONSOLE :
2 SYSTERM :
4 1 WNctJSTR: (12000]
5 I FLOPPYl: 1 320]
6 PRINTER :

12 I FLOppy2: 1 640]
Root vol is - WNC»STF`:
Pref ix i§ - FI,OPPY2:

''Root vol" is the system disk or boot disk.
"Prefix is" indicstes the default disk. Storage
volumes are indicsted by '#'.

After each disk volume, tlie number of 512-byte
blocks that it contains is given in square
brackets. . This can be useful if tlie system uses
disks of varying storage capacities. In the
preceding example, the Wir,chester disk on-line in
drive #4: contains 12000 b]ocks of stoi.age
capacity, and the floppies orrline in drives #5:
and #12: contain 320 and 640 blocks,
respectively.

0100101s03A 3-93

File Mamgement: V(olumes

The V(olumes f unction also displays the mounted
subsidiary volumes. The name of the principal
volume snd the name of the starting block are
gjven for eacli subsidiary volume listed.

The following listing is an example.

Vols on-1ine:
1 CONSOLE: :
2 SYSTERM:
4 I WNCHSTR: 1120001

51 E`LOPPY1: 1 3201

6 PRINTER:
12 I rLoppv2: (64o)
13 I DOCS: I 30001 on volume WNCIISTR: starting at block 400
14 I PROGRMS: I 30001 on volume WNclisTR: starting at block 3700
15 I FUN: I 3000] on volume W"CHSTR: sta[ting at block 7040

Root vol is -WNCHSTR:
Prefix is -FLOPP¥2:

In this example, three subsidiary volumes on
WNCHSTR: are mounted. They use device
numbers #13:, #14:, and #15:. Each of these
volumes contains 3000 blocks.

3-94 0100101s03A

File Management: W(hat

W(hat

On the n.ienu: W(hat

This function identifies the name of the curi.ent
work file. If the work f ile liasn't been saved,
the plirase "(not saved" is displayed after the fi]e
name®

EXAMPLE:

Wo[k f ile is DOC1:STUFF

0100101 :03A 3-95

File Mamgement: X(amine

X(amine

On the menu: X(amine

This function attempts to physically recover
suspected bad bloclts.

You must specify the nsme of a volume that is
on-line,

EXAMPLE:

Prompt:

Examine blocks on what vol?

Response:

<volume ID>

Prompt:

Block-[ange ?

Response:

< b l oc k -n u iTib e [>
Or

<block-number> -<block-number`

3-96 0100101:03A

File Mamgement: X(amine

If you just enter a block number, only that block
is examined. If you enter two numbers separated
by a hyphen, au of the blocks fi.om the first one
to the second one, inclusive, are examined. You
should have just performed a bad block scan and
should enter the block number(s) returned by that
scan. If any files are endangered, the following
prompt should appear:

Prompt:

file(s) endangered:
<f ile name>

Fi* them?

Entei.ing 'Y' causes the filer to examine the
blocks Qnd retupn either of the messages:

Block <block-numbe[> may be ok

In whicl` case the bsd block has probably been
fixed, or block <block-number> is bad. If block
<block-number> is bad, the filer offers you the
option of identifying the block(s) as BAD. Blocks
mGLrked BAD aren't moved during a K(runch snd
are rendered unavailable and effectively harmless
(though they do reduce the amount of poom on
the dis,{).

An 'N' response to the 'fix them?' prompt
retiirru you to the outer level of tlie filer.

Oloo101:03A 3-97

File Management: X(amine

WARNING: A block that is fixed may contain
garbage. "May be ok" shot]ld be translated as ''is
probably physically ok." Fixing a block means
that the block is i.ead, is written back out to the
block and, is read again. If the two reads are
tlie same, the message is "may be ok." If the
reads are different, the block is declared bad and
may be marked as such if so desired.

3-98 010010l:03A

File Management: Z(ero

Z(ero

On the menu: Z(ero

This f unction initializes the directory on the
specified volume, rendering the previous directory
irretrievsble.

EXAMPLE:

Prompt:

Ze[o di[of what vol ?

Response:

<volume lD>

Prompt:

De§troy <voliime name> ?

A 'Y' response generates...

P,.Ompt:

Duplicate dir ?

0100101 :03A 3-99

File Msnagement: Z(ero

If you enter a 'Y', a duplicate directory is
maintained. This is advisable because if the disk
directory is destroyed, a utility program called
COPYDUPDIR can use the duplicste directory to
i.estoi.e the disk.

The next prompt appears only if there wss a
directory on the disk befoi.e the Z(ero function
was used:

Prompt:

A[e there 320 blks on the disk ? (y/n)

'Y' accepts that number of blocks snd skips the next

prompt. 'N' generates...

Prompt:

1 of blocks on the disk ?

Enter the number of blocks desired. . This
number varies depending upon your particular
diskso

The next prompt is:

New vol name ?

3-100 0100101:03A

Ffle Management: Z(ero

Enter any valid volume name.

Prompt:

<new volune riame> cor[ect ?

'Y' accepts the name. 'N' returns to the
prompt requesting a new volume name. If the
fner succeeds in writing the new directory on
the disk, this message is displayed:

<new volume name> zeroed

0100101:03A 3-101

C H A P T E R 4

SCREEN-ORIENTED

EDITOR

Screen-Oriented Editor

INTRODUCTION

TTie editors available with tlie p-System allow you
to create, alter, and examine text files. Text files
contain human-readable msterial such as memos or
manuscripts.

Three editors are available with the p-System: the
Screen-Oriented Editor, the advanced editor
(EDVANCE), -and the Line-Oriented Editor (YALOE).
This. chapter is devoted to the Screen-Oriented
Editor,

THE EDITOR

Introduction

ln o.rder to use the editor, SYSTEM.EDITOR must
reside on a disk which is on-]ine. Also, the
SYSTEM.MISCINFO file must be configured for
your particular terhinal. If this hssn't already
been done for you, configure it with the SETUP
utility described in Chapter 5.

The Window into the File

The Screen-Oriented Editor is specif ically for
use with video display terminals (or cathode
ray tubes, CRTs) most of which have 24-line
screens. The editor usuany uses the first line
of the screen to display its menu. Therefore,
most of the time .it displays 23 lines of text
within the file. Using the editor, you may
view any part of the file in 23-1ine segments.

Oloo101:04A 4-3

Screen-Oriented Editor

You actually look into the file through a
window that the editor provides. Although you
can access tlie whole file by using editor
commands, you can view only a portion of it
through the window in the screen. Wlien sn
editor command takes you to s position in the
file that isn't presently displayed, the window
moves to sliow you thst new portion of the
file,

The Cursor

The cursor is usually a small rectangular box
or an underline that appears to be on (or
under) a character. On some terminals, the
cursor may blink continuously. The cursor is
logicauy located between the character to its
left and the character on which it rests. You
position the cursor to indicate to the editor its
commands are to affect the text. For
example, the editor win insert text in front of
(that is, to the left of) the charcter on wliich
the cursor rests.

You can move the cursor to any specific
location in a file; at that point, it then
represents your exact position in the file. The
window shows the portion of the file that
sui.i.ounds the cursor; to see another portion of
the file, move the cursor. TT`e cursor follows
the c.ommands of the editor. For example, if
you delete portions of the f ile, you move the
cursor to indicate the beginning and extent of
the deletion.

4-4 0100101:04A

Screenoriented Editor

In this chapter, all text examples are shown in
uppercase, with the cursor denoted by an
underline or a lowercase character.

The Menu

The editor displays a menu at the top of the
screen to i`emind you of the current command
and the options available for that command.
The most eommonly used options appear in the
menu. The fouowing is an example of the
editor's first-level menu, called the E(dit menu.

>Edit: A(djust C(opy D(el F(ind I(nsert J(ump K(ol M(argin P(age ?

Notation Conventions

The notstion used in this chapter corresponds
to the notation the editor uses to prompt you.
The system uses sngle brackets (< >) to
indicate a single key like the return key
(<return>) or the space bar (<space>).

Enter 'FILE NAME<return>' mesns to enter the
name of the file and then press the return key.
You may use either lowercase or uppercase
when entering editor commands.

Ol oo101:04A 4-5

Screen-Oriented Editor

Editing Environment Options

The editor has two chief modes of operation:
one for entering and modifying programs and
another for entering and modifying English (or
any other language) text. The f irst mode
includes automatic indentation; the second
includes automatic text fiuing. For more
information on these two options, see the
description of the E(nvironment option of the
S(et command.

Command Hierarchy

The Command menu is tlie first or highest level
of the command hierarchy. To enter the
system editor, press 'E' from the Command
menu. If you don't have a text work file, you
are prompted for the name of a file to edit.
You should enter the file name without the
''.TEXT" suffix, fonowed by <return>. (If you
have a text work file, thst file is
automaticauy edited.) The system wiu display
the E(dit menu:

>Edit: A(djust C(opy D(el F`(ind I(nsert J(ump K(ol M(a[gin P(age ?

The E(dit menu is the second level .of the
command hierai.chy, as is the F(ner menu and
all the other menus tlist you can display from
the Command menu.

4-6 0100101:04A

Screen-Oriented Editor

For example, to select the editor I(nsert
option, press '1'. The system now displays the
third level of the command hierarchy:

>Insert: Text {<bs> a cha[, a line} I<ext> accepts, <esc> escapc

Repeat Factors

The F(ind and R(eplace commands, as weu as
most of the cursor-movement keys, allow repest
factors. A repeat factor allows you to specif y
the number of times a command should be
performed by the editor. For example, enter'2R' to select tlie R(eplace command. "e
editor will display this third-level menu.

>Replace[2]: L(it V(fy <targ><sub> =>

The number 2 that you entered appears inside
the square brackets to indicate that the editor
will perform the specified function two times.

ifefayu°i: (da°s:Ltmesdp)ecfäafcyto: £rsep]e.at 6::t°ar ' s]i::
(/) to specify that a function should be
performed as many times as possible.

0100101:04A 4-7

Screen-Oriented Editor

Direction lndicator

The direction indicator detei.mines whether the
cursor win be moved in the forward direction
or in the reverse direction. For example, if
the direction indicator is forward, the cursor
will move to the right (toward the end of the
f ile) when you press the space bar. If the
direction indicator is reversed, then the cursor
will move left (toward tlie beginning of the
file) when you press <space>.

The fii.st character in the menu indicates the
global direction. A right angle bracket (>)
indicates movement to the right, and a left
angle bracket (<) indicates movement to the
left. To change the global direction, press the
left or right angle brackets on the keyboard.
When you enter the editor, trie global direction
is right.

Using the Editor

Moving the Cursor

The special keys described in this section
enable you to move the cursor in a number of
ways. Global direction affects the space bar,
return key, and the tab key. It doesn't affect
the arrow keys and <backspace>.

4-8 0100101:04A

Screen-Oriented Editor

Pressing tlie equal sign (=) moves the cursor
to the beginning of the last text that was most
recently inserted, found, or replaced. The
equal sign woi.ks from anywhere in the file and
isn't affected by the `global direction. An
I(nsert, F(ind, or R(eplace saves the position
(within the work file) of tlie beginning of the
insertion, find, or replacement.

Pressing the equal sign moves the cursor to
that position and saves the cui.sor location. If
you perform a C(opy or a D(elete between the
beginning of tlie file snd that absolute position,
the cursor won't jump to the start of the
insertion, because that absolute position has
tlien been]ost.

The J(ump command moves the cursor to the
beginning or end of s file, or to a previously
def ined marker anywhere within the f ile (see
the S(et M(arker command). The P(age
command moves the screen window forward (or
backward) by one screen and positions the
cursor to the beginning of the line. These
eommands ai.e described in the section entitled,
''Screen-Oriented Editor Commands.''

0100101=04A 4-9

Screen~Oriented Eaitor

The following list summsrizes the keys which
move the cursor.

Not affected by current global direction:

<down-arrow> Moves the cursor down

<up-arrow> Moves tlie cursor up

<right-arrow> Moves the cursor right

<left-arrow>

<backspace>

Moves the cui'sor left

Moves the cursor left

Motion determined by global direction:

<space>

<tab>

<return>

Moves the cusor one space
in the global direction

Moves the cursor to the
next tab stop

Moves tlie cursor to the
beginning of the next line

These keys change the global direction to
backward:

Left angle bracket (<)
Comma (,)
Minus sign (-)

4-10 0100101:04A

Screen-Oriented Editor

These keys change the global direction to
forward:

Right sngle bracket (>)
Period (.)
Plus sign (+)

You can use repeat factors with any of the
cumsor movement keys listed above.

To move the cursor on terminals which don't
have arrow keys, use the SETUP utility to
designate a set of control keys to act as
cursor keys. To configure the system for use
with a particular terminal, refer to Chapter 5.

You can't move the cursor outside the text of
the progrsm. For example, after the 'N' in
'BEGIN' in Figure 4-1, press the <right-arrow>;
this moves the cursor to the 'W' in 'WRITE'.
Similarly, at the first 'W' in "WRITE('T00 WISE
');", use the <left-arrow> to back up after the
'N' in 'BEGIN'.

BEGIN_
WRITE('TO0 WISE ');

BEGIN

ERITE('TOO WISE ');

Figue 4-1. Cursor Example

0100101:04A 4-11

Screen-Oriented Editor

In Figure 4-2, if you must change the
'WRITE('TO0 WISE ');' found in the third line
to a 'WRITE('TOO SMART ');', you must first
move the cursor to the correct position.

For example, if tlie cursor is at the 'P' in
'PROGRAM STRING1;', go down two lines by

pressing the <down-arrow> twice. To mai.k the
positions the cui.sor occupies, labels a, b, and c
are used in Figure 4-2. The 'a' marks the
initial position of the cursor; the 'b' marlts the
cursor position after the first <down-arrow>;
and the 'c', marks the cursor after the second
<down-arrow>.

aROGRAM STRINGl

bEGIN
cWRITE:('TOO h'ISE ') ;

Figue 4-2. Cursor Positions

Now, using the <right-arrow>, move the cursor
until it sits on the 'W' of 'WISE'. Note that
with the use of the <down-ari.ow>, the cursor
appears to be outside the text (c). However,
when the cursor is displayed outside the text,
it is actual]y on the closest character to the
right or left. In tliis case, the editor considers
the cursor to be at the 'W' in 'WRITE'; when
you press the first <left-ai.row>, the cursor
jumps to the 'R' in 'WRITE'.

4-12 0100101:04A

Screen-Oriented Editor

P(ind and R(eplace

Both F(ind and R(eplace opei`ate on delimited
strings. The editor has two string storage
variables. One, caued <targ> by the menus, is
the target string and is used by both
dommands; while the other, called <sub> by the
R(eplace menu, is tlie substitute strin~g and is
used only by R(eplace.

Enter these strings when using F(ind or
R(eplace. Once entered, they are saved by the
editor and may be reused.

swpheecnj8]y°Uch:::::era ::r£ndg:)£# r#:ik)Useth:
beginning and end of the string. For example,
/fun/, Sworks, 8nd "gismet" i.epresent the
strings fun, work, and gismet, respectively.
The editor allows any character that isn't a
letter or a number to be used as a delimiter.

F(ind and R(eplace operate in either of two
search modes: literal and token. These modes
are stored by the S(et E(nvironment command

:.n:p:f:ri?ye :3::giedddebny j:ingor titeyF(T# 3:
R(eplace commands.

Ol oo101:04A 4-13

Screen-Oriented Editor

In the literal mode, the editor looks for any
occurrences of the target string. In the token
mode, the editor looks for isolated occurrences
of the target string. The editor considers a
string isolated if it is surounded by spaces or
other punctuation. For exsmple, in the
sentence ''Put the bool< in the bookcase.," using
the taLrget string "book," the literal mode finds
two occuri'ences of "book," while the token
mode f inds only one-the word ''book" isolated
by spaces.

In addition, tlie token mode ignores spaces
within strings, so that <space> comma <space>
(" , ") and comma (",") are considered the same
string.

When using either F(ind or R(eplace, you may
use the strings previously entered by pressing
'S'. For example, entering 'RS/<anyitring>/'
causes the R(eplace command to search for an
occurrence of the previous tai.get string and
replace it with <any string>. Entering
'R/<8nyitring>/S' causes the next occurrence
of <any string> to be i`eplaced with the
previous substitute string.

To find out the current contents of the <tsrg>
and <sub> strings, use the S(et E(nvironment
command. -

4-14 Oloolo1:04A

Screenoriented Editor

Work Files

When you enter the editor, the system reads
and displays the work f ile. If you haven't
already created a work file, the editor will
display the fouowing prompt:

>Edit: No work f ile is present.
rile? (<[et> fo[no f ile)

There are three ways to respond to this
prompt:

1. With a name, for example 'STRING1'¢et>.
The file named STRING1.TEXT is now
retrieved. The file STRINGl could contain
a program, also called STRINGl, as in
Figure 4-3. After entering the name, the
text of the first part of the fne appears on
the screen.

£F`OGRAM STRINGl ;
BEGIN

WRITE ('TOO WISE .) ;
WRITE (`YOU ARE: ') j
WRITELN (' , .) ;
WRITE:LN ('TOO WISE: ') ;
WRITELN('YOU BE')

E: ND .

Figüe 4-3. Program Stringl

0100101:04A 4-15

Screen-Oi.iented Editor

2. With a <return>. This response indicates

t#:gy°#£sY£SLhet°onstat`±easncerweef:Le.aftTehre:E¥
response is the E(dit menu. Press '1' to
begin inserting a program or text.

3. Witli <escape>. This response stops the
editor, causing the system to return to the
Command menu.

Using lnsert

To use the I(nsert command, press '1' from the
E(dit menu. Place the cursor on' top of the
letter before which you want to make sn
insertion. The cursor must be in the 6oi`rect
position before pressing '1'. From the point of
insertion, the rest of the line is moved toward
the right side of the screen. If the insertion
is long, that part of the line is moved down to
allow room on the screen.

After pressing '1', the system displays the
following prompt:

>Insert: text {<bs> a cha[, a line} [<etx> accepts, <esc> escap€

The cursor is at the 'W' in 'WISE' (see Figue
4-3). Enter 'SMART'. The word appears on
the screen as it is entered (see Figure 4-4).

4-16 0100101:04A

Screen-Oriented Editor

The choice at the end of the prompt indicates
that pusliing the <etx> key aceepts the
insertion; while pushing the <esc> key i.ejects
the insei.tion, leaving the text as it was before
E>ressing '1'. Press <etx> (see Figue 4-5).

BEGIN WRITE('TOO SMART_ WISE ');

Figue 4-4. Screen after entering 'SMART'

BEGIN WRITE{.TOO SMARTW'ISE ');

Figure 4-5. Screen after <etx>

While in I(nsert, you can insert a carriage
return by pressing <return>. The editor then
starts a new line. Notice that a carriage
return starts a new line with the same
indentation as the previous one. This is often
convenient when entering program text. (See
the section on Auto-Indent mode.)

Using Delete

D(elete works like I(nsert. Move the cursor to
the 'W' IN WISE (see Figure 4-5) and press 'D'
to select the D(elete command. 'ITie system
then displays the following prompt:

>l)elete: < > <Mo`.ing commands> {<etx> to delete, <esc> to abo[t}

0100101:04A 4-17

Screen-Oriented Editor

Each time you press <space>, a letter
disappears from the screen. Press <space> four
times. Pressing <backspace> causes a
character to rea.Dpear. Pressing <etx> causes
the deleted text to be removed pei.manently, or
pressing <esc> causes it to reappear and remain
unaffected.

To delete a carriage return at the end of a
line, press 'D' and then press <space> until the
cursor moves to the beginning of the next line.

Leaving the Editor

When all text changes and additions have been
made, press 'Q' to leave the editor. The
system then displays the fouowing menu.

>Quit:
L'(pdate the work file and leave
E(xit without iipdating
R(eturn to the editor without updating
W(rite to a £ile name and [eturn

Using the U(pdate option saves a copy of the
file on disk as SYSTEM.WRK.TEXT. This file
is your work file.

The W(rite option saves the file under whatever
name you wish. The file isn't necessarily your
work file.

4-18 0100101:04A

Screen-Oriented Editor

R(eturn simply returns you to the editor
without saving anything to disk.

E(xit leaves the. editor without saving anything.
Any changes or additions to the file are
discsrded and lost permanently.

0100101:04A 4-19

Screen-Oriented Editor: A(djust

Screen-Oriented Editor ComiDands

The Screen-Oriented Editor activities are covered
in alphabetical oi.der in this section.

A(djust

On tlie menu: A(djust

Repeat factors are auowed in conjunction with
the arrow keys within A(djust.

Press 'A' from the E(dit menu. This displays
the following menu:

`Ad]ust: L(]iist R(]iist C(ente[`arrow keys) (<etx> to leave}

The A(djust command moves s line to the left
or to the right. The <right-ai`row> and
<left-ari.ow> move the line on wh.ich the cursor
is locsted. Each time you press a
<right-arrow>, the whole line moves one space
to the right. TTie <left-arrow> moves the line
one space to the left.

To adjust more than one line, use the
<up-ari`ow> or <down-arrow>; the line above or
below the previously adjusted line is
automatically adjusted by the same amount.

4-20 0100101:04A

Screen-Oriented Editor: A(djust

The character 'L' justifies the line to the left
mmgin, 'R' justifies it to the riglit margin, and
'C' centers the line between the margins. Use
the <up-arrow> and the <down-arrow> to
duplicate the adjustment on preceding
(succeeding) lines.

Use the S(et E(nvironment command to alter
the margins.

The system repositions the cursor to the
beginning of tlie last line adjusted. Press
<etx> to exit the A(djust command; <esc> won't
work liere.

Oloo101:04A 4-21

Screen-Oriented Editor: C(opy

C(opy

On the menu: C(opy

Repeat factors are not allowed.

Press 'C' from the E(dit menu. The following
menu is displayed.

>C(opy: B(uffer F(rom f ile <esc>

The C(opy command allows text to be copied
into the current text from one of two sources:
a temporary buffer caued the "copy buffer," or
a text file on disk. To copy from the copy
buffer, press '8'. The editor immediately
copies the contents of the buffer into the file,
starting at the location of the cursor when you
pressed 'C'. The buffer may be recopied until
you change the contents of the buffer.

When the C(opy function ends, the cursor is
placed at tlie end of the copied text.

The following commands affect the copy buffer.

1. D(elete: When you press <etx>, the buffer is
loaded with the deletion. When you press
<esc>, the buffer is losded with what would
have been deleted.

4-22 0100101:04A

Screen-Oriented Editor: C(opy

2. I(nsert: When you press <etx>, the buff er is
loaded with the insertion. When you press
<esc>, the copy buffer is emptied.

3. Z(ap: If you use the Z(ap command, the
buffer is loaded with the deletion.

4. M(argin: This command causes the copy
buffer to be left empty.

Generally, if the text that you want to copy
already exists, you should D(elete it, and press
<esc>. .Then you can use C(opy B(uffer to
place that text anywhere you like. The
original text remains unaffected.

To copy text from another file, press 'F'. The
system then displays the fonowing menu.

>C(opy: From what f ilelmarker,ma[ker]?

Any file may be specified; .TEXT is assumed.
The markers are optional and are used for
copying part of a file.

0100101=04A 4-23

Screen-Oriented Editor: C(opy

To copy part of a file, you must have
previously S(et markers; at the beginning and
end of the text you wish to copy. You may
use two markers, or the file's beginning or end
as a marker. For example, if you specify
[,marker] or [marker,], the file is copied from
the start of the file to the marker or from the
marker to the end of the file.

4-24 0100101:04A

Sci.een-Oriented Editor: D(elete

D(elete

On tlie menu: D(el

Repeat factors aren't allowed.

To select the D(elete command, press 'D' from
the E(dit menu. The following prompt is
displayed:

>Delete: < > <Moving commands> {<etx> to delete, ,<esc.> to abort}

You must have first placed the cursor where
you want to begin deleting text. The D(elete
command uses an ''anchor'' at this initial
position. As you move the cursor away from
the anchor, characters disappear. Moving back
toward the anchor restores those characters to
the text file. To accept the deletion, press
<etx>; to escape, press <esc>.

Witliin the D(elete command, au cursor-moving
actions are valid, including repeat factors and
globsl direction.

Whenever a deletion is larger than the
available copy buffer space, the editor will
display the following warning.

There is no room to copy the deletion. Do you wish to delete anyway?

0100101=04A 4-25

Screen-Oriented Editor: D(elete

A 'Y' or 'y' is a yes answer; any other
character escapes the D(elete command.

The following pi.ocedure shows how to use the
D(elete command (see Figure 4-6).

1. Move the cursor to the 'E' in END.

2. Press '<' (this changes the direction to
backward).

3. Press 'D'.

4. Press <return><return>. After pressing
<return> once, the cursor moves to the
position in front of the 'W' in WRITELN,
and "WRITELN('TO BE.');" disappears. After
the second retiirn, the cursc;.- appeai's befoi.e
the 'W' in WRITE with that line gone.

5. Now pi.ess <etx>. After deletion, the
progi.am appears as shown in Figure 4-7.

4-26 0100101:04A

Screenoriented Editor: D(elete

Tlie two deleted lines have been stored in the
copy buffer, and the cursor has returned to the
anchor position. If you wish, you may now use
C(opy to copy the two deleted lines to sny
other place in the file.

PROGRAM STRING2;
BECIN

WRITE('TOO WIS£ ');
WRITE:LN ('T0 BE:. ')

END.

Figure 4-6. D(elete Example A

PROCRAM STRING2:
BEGIN
ENI) .

Figue 4-7. D(elete Example 8

0100101:04A 4-27

Screenoriented Editor: F(ind

F(ind

On the menu: F(ind

Repeat factors are allowed.

To use the F(ind command, press 'F' from the
E(dit menu. The system will display one of the
following prompts (depending upon how T(oken
definition is set in S(et E(nvironment):

>find[n]: L(it <target> =>
>Find(n]: T(ok <ta[qet> =>

(Whei.e 'n' is the repeat factor given before
pressing 'F'; this number is 1 if you gave no
repeat factor.)

The F(ind command locates the nth occurrence
of the <tsrget> string, starting from the cursor
position and moving in the global direction
(shown by the arrow at the beginning of the
menu). The cui.sor stops at the position
immedistely after tliis occurrence.

To search in the token or the literal mode,
press the appropriate character (either 'L' or'T', respectively), before entei.ing the target
string.

4-28 0100101:04A

Screen-Oriented Editor: F(ind

If the string doesn't occu within the text ffle
between the cursor and the end or beginning of
tlie file (depending on global direction), the
system displays the following message.

ERROR: Patte[n not in the f ile. Please press <spacebar> to continue.

The fonowing paragraphs show how to use the
F(ind commsnd.

In the STRINGl program (see Figure 4-8), with
the cursor at the first 'P' in 'PROGRAM
STRING1', press 'F'. When the prompt appears,
enter 'WRITE'. Single quote marks must be
entered. The prompt with your response is
shown in the following listing.

>Findll): L(it <target> [>'WRITE:'

Immediately, the curs®r jumps to the character
following the 'E' in the first 'WRITE'.

In the STRINGl pi.ogi.am with the cursor on
the 'E' in 'END.', enter '<3F' (don't include
single quotes). This entry
occurrence of the pattei`n
direction. When the menu
'/WRITELN/'. The menu with
shown in tlie fouowing listing.

<Findl3l: L(it <'target> =>/WRITE:LN/

0100101:04A

finds the third
in the reverse
appears, enter
your response is

4-29

Screenoriented Editor: F(ind

The cursor will move to a position immediately
sfter the 'N' in WRITELN.

On the first find, enter 'F/WRITE/'. This
locstes the first 'WRITE'. Now enter 'FS'.
The cursoi. appars after the second WRITE.

PROGRAM STRINGl;
8 E:G I N

WRITE|'TOO WISE ');
WRITE|'YOU ARE ') ;
WRITELN1' , ') ;
WRITELN('TOO WISE ');

WRITELN(`YOU BE. ')

END.

Figure 4-8. F(ind Example

4-30 0100101:04A

Screen-Oriented Editor: I(nsert

Insert

On the menu: I(nsert

Repeat factors uen't allowed.

To select the I(nsert command, press '1' from
the E(dit menu. `n`e system then displays the
fonowing menu.

Characters are entered into the text file as
they are pressed, starting from the position of
the cursor. This includes the character
<return>. Nonprinting characters are cchoed
with the nonprinting character symbol (usuauy
a '?'; this can be changed by using SETUP).
To make corrections whne stiu in I(nsert, use
<backspace> (<bs>) to remove one character at
a time or <rubout> () to remove an entire
line. Backspacing past the beginning of the
insertion cQuses the system to display an error
message.

Create the text file with the I(nsert eommand,

ää:Fr.ntmh.en,mc:dLemsanä:.lecj:eds(::tE(n:r,e;nms:::
for selecting the autcrindent and the filling
modes,

0100101304A 4-31

Screen-Oriented Ecitor: I(nsert

Using Auto-Indent

lf auto-indent is true, a <return> causes the
cursor to start the next line with an
indentation equal to the indentation of the
line above it. ` If auto-indent is fdse, a
<return> returns the cursor to the first
position of the next line.

Using Filling

lf f illing is true, the editor forces all
insertions to be between the right and left
margins. It does this by automatically
inserting retui.ns between words whenever.the
right margin would have been exceede.d and
by indenting to the left margin whenever a
new line is started. The editor considers
anything to be a word that is between two
spaces or between a space and a hyphen.

Pressing two returns in succession creates a
new parsgraph. In other words, a paragraph
s a block of text delimited by blank lines
or command lines (see S(et), or the begihning

or end of the text fne). The first line of a
paragraph may be indented differently than
the remaining text (see S(et E(nvironment).

4-32 0100101:04A

Screen-Oriented Editor: I(nsert

If both autcrindent and filling are true,
auto-indent controls the left-margin, while
filling controls the right-margin. You may
change the level of indentation by using the
<space> and <backspace> keys immediately
after a ¢ettmn>.

Example 1: With autcrindent true, the
fouowing sequence creates the indentation
shown in Figure 4-9.

'ONE ' `r ct u[n`

< spac e > ` s pa c e ` ` Th`0 ' .` r et u r n ` '
Tl]REE ' ` r e t u r n `
`back space ` ' fol.f` '

Oh'E o[iginal]ndentation
Th'O indentatic`n c.hanged b}. `space>`space>
Tl]RE£ `rcturr`` c.auses auto-indentation to leve] of lirie above

FOUR `backspac.c.` changes indentation f rorii level of line above

Figue 4-9. Indentation Example

Example 2: With filling true (and auto-indent
false) the following sequence creates the
indentation shown in Figure 4-10.

'ONCE UPON A TI}lE TH£RE-h.E:RE'.

ONC£ i)PON ^ Autt`-returned when r`ext word would exceed margin
TIME TH£RE- Auto-ic.tu[ned at hyphen
WERE:

Level of l€f t margin

Figure 4-10. Auto-ndent Example

0100101:04A 4-33

Screen-Oriented Editor: I(nsert

You can force the cui.sor to the left margin
of the screen by entering <control-Q>
(ASCIIDC1). On some machines or
terminals, CTRL-Q is the prefix cliaracter
which requires you to press it twice to
achieve the desired effect.

Filling also causes the editor to adjust the
margins on the portion of the paragraph
following the insei.tion. Tliis adjustment
doesn't affect any line beginning with the
command character (see S(et), arid such a
line tei.minates a paragraph.

You may readjust a filled paragraph by using
the M(argin command but only if F(illing is
TRUE and Auto-indent is FALSE. This may
be very useful if you wish to change the
mai.gins of a document (which may be done
with S(et E(nvironment).

The global direction doesn't affect I(nsert,
but is indicated by the direction of the
arrow on the menu.

If an insei.tion is made and accepted, that
insertion is available for use in C(opy.
However, if <esc> is used, there is no string
available for C(opy.

4-34 0100101:04A

Screen-Oriented Editor: J(ump

J(ump

On the menu: J(ump

Repest factors aren't allowed.

Upon entering J(ump, the following menu
appears:

>JUMP: B(eginning E(nd H(a[ker <esc>

Pressing '8' (or 'E') moves the cursor to the
beginning (or the end) of the file. Pressing 'M'
displays the following prompt:

Jump to what ma[ke[?

Markers are usei'-defined nsmes foi. positions in
the text fne. See the M(arkers command of
the S(et command for more information.

0100101:04A 4-35

Screen-Oriented Editor: K(olumn

K(olumn

On the menu: K(ol

Repeat factors aLren't allowed.

K(olumn displays the following menu:

>K(olurrin: `\.ector ke}.s> (<etx`, `esc> Cl'RRE:NT line}

You may move all of a line which lies to the
right of the cursor to the left by using the
<left-arrow> or to the right by using the
<right-arrow>. Using the <up-ari.ow> or
<down-arrow> applies the same column
adjustment to the line above or below. Press
<etx> to leave K(olumn. You can use <esc>,
but it only rejects the changes made most
recently to the current line.

NOTE: When using K(olumn, each <left-arrow>
deletes one character at the cursor. It's easy
to do this and any characters deleted aren't
saved in the copy buffer as in D(elete, so be
careful when using K(olumn.

4-36 0100101:04A

Screen-Oriented Editor: M(argin

M(argin

On the menu: M(argin

Repeat factoi.s aren't auowed.

M(argin realigns the paragraph (where the
cursor is locsted) to fit within the current
mai.gins. AU of the lines within the paragraph
ai.e justified to the left margin, except the
first line, which is justified to the paragraph
margin. You can set all these global margins
with` the S(et E(nvironment command.

The cursor may be located anywhei.e within the
paragraph when you press 'M'.

Figures 4-11 and 4-12 show margins settings
and an example of a paragraph that uses those
settings.

Left-margin, 0
Right-margin, 40
Parsgi.aph-margin, 8

This quarter, the equipment is
dif ferent, the couTse Trtate[ials are
substantially diffe[ent, and the course
o[9anization is dif fe[ent from previous
qiia[ters. `.ou vill be misled if you
depend upon a friend who took the coLirse
previousl}. to orient you to the course.

Figure 4-11. M(argin Example A

0100101s04A 4-37

Screen-Oriented Editor: M(argin

Left-margin, 8
Right-margin, 40
Paragi.aphmargin, 0

This qi]a[te[, the eqiiipD`ent is
di£ferent, the course mate[ials
are substantially diffe[ent, anci
the course organization is
different f [om previous qua[ters.
You will be misled if you depend
upon a friend who took the course
previously to orient }'ou to the
Coll r Se .

Figure 4-12. M(argin Example 8

A paragraph is any block of text delimited by
blank lines, lines beginning with a command
character or the beginning or end of the text
file. If tlie text file or the pai.agraph is
especiauy long, the system may remain blank
for severd seconds while M(argin completes its
work. When M(argin finishes, the system
redisplays the paragraph. M(argin never splits
a word; it breaks lines st spaces or at
hyphens.

4-38 0100101:04A

Screen-Oriented Editor: M(argin

Commond Characters

M(argin won't affect a line if the line starts
with a command character. The command
character must be the first nonblank
character in the line. M(argin treats lines
beginning with the command character as
blank lines. The command character itself is
any character so designated using the S(et
E(nvironment command.

0100101:04A 4-39

Screen-Oriented Editor: P(age

P(&ge

On the menu: P(8ge

Repeat factors are allowed.

Moves the cursor one screen in the global
direction. If a repeat factor is used, several
screens are traversed. The cursor remains on
the same line on the screen, but is moved to
the start of the line.

4-40 0100101:04A

Screen-Oriented Editor: Q(uit

Q(uit

On the menu: Q(uit

Repeat factors aren't allowed.

Q(uit displays the fouowing menu:

>Qu i t =
U(pdate the work file and leave
E(xit without updatii`g
R(eturn to the editor without updatirig
W(rite to a f ile name and retiirn

Select one of the four options by pi.essing 'U',
'E', 'R', or 'W'. All othei. characters are
ignol.ed.

U(pdate:

Stores the f ile].ust modified as
SYSTEM.WRK.TEXT; then leaves the editor.
SYSTEM.WRK.TEXT is the text poi.tion of
the work file.

E(xit3

This leaves the editor immediately. Any
modif ications made since entering the editor
ai.en't recorded on disk. AU editing during

i::eseas]SrL::d}S:::edc°tvheera#(yr£::St:oummmeasnsdy:¥
Q(uit to save the work.

0100101:04A 4-41

Screen-Oriented Editor: Q(uit

R(etun=

Returns to the editor without updating. The
cursor is returned to the exact place in the
füe it occupied when 'Q' was pressed. This
commsnd is f requently used sfter
unintentiomlly pressing 'Q'. It is also useful
when yL,'u wish to make a backup to your file
in the middle of a session witli the editor.

W(rite=

This command puts up a further menu:

>Quits
Name of oiitput file (<cr> to return)-->

The file may now be given any proper name.
If it is written to the name of an existing
file, the new copy replaces the old file.
Use 'S' to write to the same name thst the
file had when you entered the editoi..
Altei.nstively, you can abort, Q(uit, at this
point by pressing <retui.n> instead of entering
a file name; you will i.eturn to the editor.
If the file is written to disk, the editor
displays the following:

>Quit
Writing.....
Your f ile is 1978 bytes long.
Do you want to E(xit from or R(etu[n to the editor?

4-42 0100101:04A

Screenoriented Editor: R(eplace

R(eplace

On the menu: R(plc

Repeat factors ai`e allowed.

Upon entering R(eplace, one of the two menus
in the fouowing example appears, depending on
the global mode. In this example, 8 repeat
factor of four is assumed.

>Replacel4]:I.(it V(fy <ta[g><siib> =>

>Replace[.]:T(ok V(fy <targ><siib> =>

R(eplsce finds the target string (<targ>)
exactly as F(ind would, and replaces it with
the substitution string (<sub>).

The V(erify command ('V(fy') al]ows you to
exsmine each <targ> string found in the text
so you can decide if it is to be replaced. To
use this .command, pi.ess 'V' before pressing the
tal.8et Strin8.

The following menu appears whenever R(eplace
has found the <targ> pattern in the file and
verification has been requested:

>Replace: <esc> aborts, 'R' replaces, ' ' doesn't

0100101:04A 4-43

Screen-Oriented Editor: R(eplace

Pressing 'R' at this point causes the
replacement to take place, and the next tai.get
to be sought. Pressing <space> causes the
next occuri`ence of the target to be souglit.
At any point, an <esc> aborts the R(eplace.

With V(erify, this process continues until the
repeat factor is exhsusted or until the target
string csn no longer be found.

With R(eplace, if the target string can't be
found, the fouowing menu appears.

ERROR: Patte[n not in the f ile. Please press `spacebar> to continue.

R(eplace places tlie cursor after the last string
that was replaced.

Example 1:

Enter 'RL/Low//High/' like this: .

>Replacell]: I,(it V(fy <targ> <siib> =>L/Low//I]igh/

This command wfll change:

"Lowly" to "Highly"

Literal is necessary because the string 'Low'
isn't a token, but part of the token 'Lowly'.

4-44 0100101:04A

Screen-Oriented Editor: R(eplace

Example 2:

In the Token mode, R(eplace ignores spaces
between tokens when finding patterns to
replace. This example concerns the fouowing
two lines,

WRITE: (' ' ') ;

WRITE(',,)'

Enter '2R' from the E(dit menu. The system
tlien displsys the following menu:

>Replacel2]: L(it V(fy <targ> <sub>

Enter /(',')/.LN. Immediately after entering tlie
last period, the following two lines replace the
previously listed lines:

W' R I T E: L N ;
h,RIT£LN;

010010l:04A 4-45

Screen-Oriented Editor: S(et

S(et

On the menu: S(et

Repeat factors aren't anowed.

Upon entering S(et, the following menu appears:

>Set: M(a[ker E(nvi[onment ``esc>

S(et E(nvironment

You can set the editing envii.onment to a
mode that is most convenient for woi.d
processing or more structured kinds of
editing (such as programming text or special
tables). When in S(et, pi.ess 'E' for
E(nvironment; the following display then
appears:

>Environment: (options} `spacebar,` to leave
A(uto indent True
F(illing False
L(eft margin
R(ight margin
P(ara margin
C(ommand ch
S(et tabstops
T(oken def True

3152 bytes used, 29612 available.

Editing: SCHEDULE.TE:XT
Created March 10, 1982; last updated Md[ch 24, 1982 (re`'ision 10)
Editor Version lIV.l f4I.

4-46 0100101:04A

Screen-Oriented Editor: S(et

The line that begins 'Editing:' identifies the
file currently being edited. If the file has
just been created but not mmed, the line
reads:

Editing: unnamed

By pressing the appropriate letter, you may
change any or all of the options.

E(nvironrient Options

A(uto indent:

Auto-indent affects only insertions. Refer
the section on I(nsert. Auto-indent is set
true (turned on) by entering 'AT' and
fdse (tuned off) by entering 'AF'.

F(iuing:

Fming affects I(nsert and M(argin. (Refei. to
those sections.) Filling is set to true (turned
on) by entering 'FT' and to false by entering
'FF'.

0100101 : 04A 4-47

Screen-Oriented Editor: S(et

L(eft margin, R(ight margin, P(ara mai.gin:

When Filling is true, the margins set in
E(nvironment are the margins that affect
I(nsert and M(argin. They also affect the
Center and justifying commands in A(djust.
To set s mai.gin, press 'L', 'R', or 'P',
f ollowed by a positive integer and a <space>.
The positive integer entered replaces the
previous value. Margin values must be four
digits or less.

C(ommsnd ch:

The command character (C(ommand ch:)
affects the M(argin command and the .Fil]ing
option in I(nsert. (Refer to those sections.)
Change the command character by pi.essing
'C', followed by any chai.acter. For
example, entering 'C*' changes the command
character to '*'. This change is reflected in
the menu. The command character wss
principauy designed as a convenience for
using text formatting programs whose
commands are indicsted by a special
character st the beginning of a line.

4-48 0100101:04A

Screen-Oriented Editor: S(et

S(et Tabstops:

The editor allows you to set tab stops.
From the E(dit command menu, press S(et,
E(nvironment, and then press S(et tabstops.
The system will display the following
interface menu.

Set tabs: `[ight, left vectors> C(oll T(oggle tab <etx>

T----T----T----T----T----T----T----T~---T----T----T----T----T----
Column,l

The cursor will stsrt at position one in the
line of Ts and dashes (-). The line
'Column#1' indicstes the positon of the
cursor. To set or remove a tab, move the
cursor to the desired location, using the
right or left vector keys; or press 'C' and
enter the desired column number. Press 'T'
to insert a tab or delete a tab.

Pressing 'T' changes the indicator from a
dash to T; pressing 'T' again in the same
column cliQnges the 'T' back to a dash. The
system displays tlie current column number of
the current cursor position and updates it
eacli time you press a right/left vector key
or 'C(olumn' command.

0100101:04A 4-49

Screen-Oriented Editor: S(et

T(oken def:

This option affects F(ind and R(eplace. Set
Token to true by entering 'TT' and to false
by entering 'TF'. If Token is true, Token is
the default; and if Token is false, Literal is
the default.

- S(et M(arker

When editing, it is particularly convenient to
be able to jump directly to certain places in
a long file by using markers set in tlie
desired places. Once a marker is set, you
can jump to it by using the M(arker command
in J(ump.

Move the cursor to the desired marker
position, enter S(et, and press 'M' for
M(arker. The fonowing prompt sppears:

Set what ma[ker?

You may give markers names of up to eight
characters followed by a <return>. The
marker is entered at the position of t
cursor in the text. If you use the name
a marker that already exists, it will
repositioned.

4-50 0100101:04A

Screen-Oriented Editor: S(et

Twenty markers are aüowed in a file at any
one time. You will receive the fouowing
displsy if you try to set more tlian 20
markers:

Ma[ke[ovf lw. h.hich one to replace? (T).pe in the letter or `sp`
a) namel b) name2 c) name3 d) narie4
e) name5 f) narr,e6 g) name7 h) names
i) name9]) namelo k) namel] 1) name]2
m) namel3 n) namel4 o) namel5 p) nam.el6
q) namel7 r) namels s) namel9 t) r\ame20

Choose a letter ''a" through "t"; that space
will now be available for use in setting the
desired mai.ker.

0100101:04A 4-51

Screen-Oriented Editor: V(erify

V(erify

On the menu: V(erify

Repeat factors aren't allowed.

The current window is redisplayed, and the
cursor is repositioned at the center line of
text on the screen.

4-52 0100101:04A

Screenoriented Editor: X(chonge

X(change

On the menu: X(change

Repeat factors aren't allowed.

Upon entering X(change, the fonowing menu
appears:

>exchange: TEXT (<bs> a char} l<esc> escapes; <ext> accepts]

Starting from the position, X(change replaces
characters in the f ile with characters you
enter.

For example, in the file in Figure 4-13, with
the cursor st the 'W' in WISE, entering 'XSM'
replaces tlie 'W' witli the 'S' and then, the '1'
with the 'M'. This leaves the line, as shown in
Figure 4-14, witli the cursor before the second
'S'.

WRITE('TO0 HIS[');

FigLüe 4-13. X(change Example A

WRITE{'T00 SMSE ');

Figure 4-14. X(change Example 8

0100101:04A 4-53

Screen-Oriented Editor: X(change

The <etx> key accepts the actions of the
ex(change, while the <esc> key leaves the
command with no changes recorded in oiuy the
last line altered.

The X(change command ignoi.es the globsl
direction; exchanges are always forward.

You may use the arrow keys, <backspace>,
<retui.n>, and <tab> to move the cursor about
the screen. X(changes move forward from
wherever the cursor is moved to.

While in X(change, the terminal's KEY TO
INSERT CHARACTER inserts one space at the
cursor's locstion, and the KEY TO DELETE
CHARAC,TER deletes a single character at the
cusor's location. These keys may be specified
with SETUP.

4-54 0100101:04A

ScreenT0riented Editor: Z(ap

Z(ap

On the meriu: Z(ap

Repeat factors are allowed.

Z(ap deletes all text between the start of what
wss previously found, replaced, or i"5erted and
the current position of the cursor. Use this
command immediately after a F(ind, R(eplace,
or -I(nsert. If more than 80 characters Qre
being zapped, the editor asks for verification.

TT`e position of the cursor after the previous
F(ind, R(eplace, or I(nsert is called the equal
mark. Pressing '=' plQces the cLLrsor there.

Whatever you deleted by using the Z(ap
command is avail&ble for tise with C(opy, unless
there isn't enoLLgh room in the copy buffer. If
this is the case, the editor then asks if you
want to Z(ap anyway.

Z(ap isn't anowed after certain commands thst
might scramble the buffer. These commands
are: A(djust, D(elete, K(olumn, and M(argin.

0100101:04A 4-55

C H A P TE R 5

UT.ILITY PROGRAMS

Utility Pi`ograms

INTRODUCTI0N

'mis ehapter covers severd utility programs that
will help you use the p-System. The utility
programs are code files that you X(ecute to provide
such services as:

• Printing text files.

• Recovering lost files.

• Configuring the p-System for your particular
keyboard and terminal.

• Making pi`ograms execute more quickly.

• Debugging programs.

• Showing you tlie internal detans of files.

The utilities described in this chapter fall into the
first four categories. The UCSD
Develo

•stem Pro

ment User Guide describes several utilities
which fit in the last two categories.

0100101:05A 5-3

Utility Programs

PRINT

Introduction

The PRINT utility providcs a simple way for
p-System users to print text files. The
screen-oriented editors in the p-System make it
easy to create and manipulate text (including
documents, memos snd programs). The PRINT
utility makes it just as easy to produce printed
versions of such text. PRINT can break a
document into pages, and put lieadings on each,
including the page number. In addition, there sre
s variety of options for controlling the line
spacing and vertical margins of the pr.inted
document.

PRINT complements the other two principal
mechanisms within the p-System for printing text
files (the T(ransfer operation in the F(iler and
the Print Spoler). Neither of those mechanisms
pi.ovides any formatting support (such as inserting
psge breaks). The big advantage of using the
Pi.int Spooler is that printing can go on in
parallel with other operations, such as text
editing. This can be a big time saver. PRINT
can be used with the Spooler becsuse PRINT's
output can be sent to a disk file. The Spooler
can then be used to print that formatted file.

5-4 0100101:05A

Utility Programs

PRINT has been designed to work with a wide
variety of printers. It makes minimal assumptions
about special control features they may have, 8nd
can be used with either continuous forms or
msnual single sheet loading.

The following section describes the simplest uses
of PRINT. You msy never need to know moi.e.
If you do, read the rest of this section, which
pi.ovides a systematic description of all of
PRINT's fscilities.

Simple Uses of PRINT

To invoke PRINT, simply X(ecute it from tlie
Command menu of the p-System. PRINT
immedistely shows a menu of the available
commands. Some of these cause immediate action
by the progi.am (such as pi.inting a document);
others allow you to set up configuration
parameters that will guide a subsequent printing
operation (such as what disk file to print).

Most of tliese configuration parameters sre
initially set up by PRINT for the most common
printing situations. In particulai`, we assume:

• That you are using continuous paper in your
printer (i.ather than single sheets);

• 'mst esch page can hold at least 66 lines of
printing (or 11~inch paper witli 6 lines per
inch); and

0100101:05A 5-5

Utility Programs

• That your printer advances the paper to a

'Pfo¥m p£egeedwwcroenntr:r ec}t%-r:¥:te:mtos:tn.ds a AS cii

lf these built-in choices meet your needs, using
PRINT is very simp|e, and consists of four steps
(once you have 'PRINT running):

1. Enter the nsme of the file to be printed,
using the I(nput option on the mcnu.

2. g.sient:5? ::est|f:;uttpetoprsien|tj:f. an:ti:: :i|fei'eaniä

G(o 8gain to print it.

3. If you need to cause a page advsnce on the
printer to tear off the printout(s) you've made,
A(dvsnce shc.uld do the trick.

4. Finslly, when you are done witli a pi.inting
session, use Q(uit to lesve PRINT.

If the printouts produced by this pi.ocess aren't
what you'd like, or if some of the assumptions
above don't apply in your situation, read the rest
of this section to discover how PRINT can be
configured to serve your needs better.

5-6 0100101:05A

Utility Programs

Interacting with PRINT

Just ss in the rest of the p-System, you interact
witli PRINT by making, choices from a menu of
options. There sre four kinds of options. They
may:

1. Cause immediste actions. A(dvance, for
instance, moves the paper in the printer to
the next page.

2. Prompt you to enter a sequence of characters,
followed by a <return>. These cliaracters are
a file nsme, in the case of I(nput.

3. Request that you enter an integer numbei`.
This number must be positive and have four
digits or fewer. This style of interaction is
used is when you clioose the initisl page
number for you hesding lines.

4. Give you a Yes or No choice. Respond by
pressing 'Y' or 'N'. This style of response is
used with the D(ouble space option, for
instance.

There is a,lso the '?' option which displays
information about riow to use the PRINT utility.

0100101:05A 5-7

Utility Programs

Other than the principal menu of commands,
which occupies most of your display screen,
PRINT does most of its communication with you
through the top line of the screen. Once you
have selected an option, prompts sppear on tliis
line to direct you. Error messages are also
shown on this line and are usually left there
until you press <space> to indicate that you have
noticed the message.

Controlling the Layout of Pages

PRINT allows you to specify the P(age length
you are using and tlie sizes of the T(op and
B(ottom mai.gins that you desire. All of these
are specified in units of pi.int lines. At the top
of a page, after T(op mai.gin lines of empty
space, a heading line is printed (which may have
the date and page number, for instance). A
blank line follows the heading. Here is a
disgram of a page, with these parameters shown:
Top of page

T(op margin
blank lines

Header line
Blank line
Fi[st text line

Last text line

B(ottom margin
blank lines

Bottom of page

5-8 010010l:05A

Utility Programs

PRINT doesn't sttempt to control the horizontd
placement of tlie text it processes. Lines are
transferi.ed to the printer exactly as they appear
in the file being printed.

TTie standard header line contains s page numbei.,
the name of the file being printed, and the
curi`ent d&te (as maintained by the p-System).
The format of this line can be changed, as
described in the next section. Hei`e is an
example header line in the stsndard format:

Page 3. File is "MYVOL:M¥FILE.. Printed on January 3,1983.

The initial page numbep for a file is oi`dimrily 1.
If you want your page numbers to start
differently, use P(age number before printing your
file,

The D(ouble space and N(umbered lines options
can be used to control those aspects of your
printout's appearance.

The Content of Psges

As mentioned above, the normal operation of
PRINT is to transfer lines witliout change from
the file being printed to the pi.inter.

0100101:05A 5-9

Utility Programs

Thei.e are two exceptions to this general
principle. First, if a line starts with the
command line flag character, it isn't printed.
Usually, tliis means it is a COMMAND line that
gives directions to PRINT. The two characters
after the flag are examined to see if they
correspond to a valid PRINT command. If they
do, the command is accepted by PRINT. If they
don't, the line is simply ignored. (You can place
comments in your text using tliis mechsnism.)

The second exception is that a line may contain
the ESCAPE SEQUENCE flag. This character
can be anywhere in the line. As with the
commands, it is the characters after the escspe
sequence flag which determine what happens. In
general, however, the escape sequence is replaced
by other text (for instance, the cui`rent page
number).

These two flag cliaracters can be changed either
from the PRINT menu (using the E(scape and
C(ommand options) or by command lines embedded
in a file being printed.

Only the first two chsractei.s after tlie command
flag are significant. Addition81 characters are
ignored. (Therefore, '.INCLUDE' and
'.INCREMENT' 8re both treated ss include
commands.) Commands may be in either
uppercase or lowercase.

5-10 0100101:05A

Utility Programs

Commands may have pai`ameters. The first
parameter must be separated from the command
name by one or more blank characters. All
parameters must be enclosed in quotes. Either
single quotes (') or double quotes (") msy be
used, but toth ends of the psrameter must be
marked by the same cFaracter (that is, "myf ile"
or ,myfile').

'ITie commands svailable in PRINT are as fonows:

INCLUDE

Oloo101:05A

This command has one parameter,
which is a file name. Printing of
the current file is temporarily
suspended and the included file is
pi.ocessed. When the end of the
included file is reached, processing
resumes on the principal file. The
included f ne can't itself contain
any INCLUDE commands. Psge
numbering is continuous across
included files.

INCLUDE auows a large document
to be spread among several
p-System files, but stnl be printed
with a single PRINT operation.
For example:

.INCLUDE: `MYVOL:MYF`lLE'

5-11

Utility Pi.ograms

PAGE

HEADING

5-12

This command has no parameters.
Its effect is to cause an immediate
page advance on the printer.

Tliis command is useful when the
page bresks that are automatically
inserted by PRINT aren't the page
breaks that you want. For
example:

. PACE

This command has one parameter,
which becomes the . new
specification of the header line
which is printed at the top of each
page. The header line can dso be
changed fröm the PRINT menu.

You can use this command in a
document file to establish a page
heading for the printed version
that is specific to the document.
For example:

.header .My document-Page \page.

0100101:05A

Utility Programs

COMMAND This command has one parameter, 8
single character (which stnl must
be enclosed in quotes). The
character becomes the new
command line flag character.

This infrequently used command
allows you to clioose the character
thst inti.oduces command lines.
For example:

.COMMAND '^'

ESCAPE

010010l:05A

This command is similar to
COMMAND, except that the
one-character pai.ameter becomes
the new escape sequence flag.

Just as with the command flag, you
mQy want to change the escape
sequence flag if the standard one
conflicts with something in your
text file. For example:

®ESCAPE ,1'

5-13

Utility Programs

END

5-14

This commsnd has no pai.8meters.
It indicates that no more text
should be taken from the current
file. If the current file is an
included file, PRINT returns to the
principal file. If the cui.rent file
is tlie principal file, printing is
discontinued.

END is convenient for EDVANCE
users. The EDVANCE editor
allows you to define special
function key macros by using text
inside of tlie file itself. Also,
EDVANCE allows you to keep an
sutomatic log of update information
within a text file. Furthermore,
whetlier or not you used
EDVANCE, you may wish to have
sn area within your files where
you keep miscellsneous informston
that you don't want to be printed
along with the main portion of the
file. Any of this sort of material
can be placed after an END
command. PRINT will ignore it.
For example:

.end
He[e you could have some
special key def initions fo[
E:DVANC E .

0100101:05A

Utility Programs

All characters are significant in escape
sequences. There are tluee standard ones, which
are translated as follows wlien found in a line
about to be printed:

PAGE The escape sequence is replaced by tlie
current page number.

FILE

DATE

0100101s05A

The input file name (either the msin
f ile, or the include file, whichever is
active).

The escape sequences is replaced by
the current p-System date, in the form
"January 1, 1983."

A principal application of these escape
sequences is in the header line which is
printed at the top of each page. You
can change the format of that line
either in the PRINT menu oi. with the
''.header''. command line in the file being

printed. For exsmple, the header

Memorandum of Understanding (\date)-Page \page

would produce printed heading lines ülte
the fonowing:

Memorandum of tJnderstanding (January 13, 1983)-Page 43

»emorandum of Understanding (May 18, 19e3)-Page 7

5-15

Utility Progi.ams

The provision for changing the header line within
the file means that you can liave diffei.ent
hesders on different pages. It would be easy,
for instance, to have a blank header on the first
page snd some speeific header on subsequent
Pa8es.

Output Methods

PRINT directs its output by default to the device
PRINTER:. You can easily change this
definition, however, from the PRINT menu. You
could, for instance, set the output file to be &
disk file or a serial communications port. The
disk f ile possibility csn be quite useful since it
allows you to store the pagimted output of
PRINT for later trarßfer to a printer. If the
Print Spooler is used for that transfer, you can
take advantage of the Spooler's ability to overlap
printing with other p+System operations,
particularly text editing.

PRINT is intended to work with printers which
use continuous forms, but also with printers
which must be loaded with each individud sheet
of paper. The S(top before each page
the PRINT menu controls which kind of
assumed. If the singleiheet variety is selected,
you are prompted to load the printer before each
page is printed.

5-16 Oloo101:05A

Utility Progi`ams

On many singleiheeti>riented printers, the paper
must be inserted about an inch past the printing
mechanism so thst pinch rollers can guide it. If
you're using such s printer, you may want to
reduce the P(age size and possibly change the
T(op mai.gin, as well. For instance, if your
printer prints 6 lines per inch and you're using
standsrd 11-inch paper, you might reduce the
P(age size from 66 lines to 60 lines.

Most printers can interpret the ASCIl form feed
character to mean ''advance the paper to the
next page." If you printer can't turn off the
U(se forTi feed option, tlie form feed character
will be replaced by the printing of a series of
empty lines. The effect will be the same as a
form feed, as long as PRINT's page size and
maLrgin options are properiy set.

PRINT lnvocation Shortcuts

lf the standard settings of the PRINT options
suit your needs most of the time, the use of
PRINT is simple and convenient. lf, however,
you generally need to change one or moi`e of the
options to do your printing, PRINT could be more
swkward to use. The M(8ke script option has
been included to sddress this situation.

This option produces a script file that will
change the options from their defaults on entry
to PRINT to the values that exist st the time
that M(ake script is invoked. You can also
inc]ude in this script a command that invokes
PRINT itself, thus reducing your keystrokes even
further.

0100101:05A 5-17

Utility Progi.ams

When you select M(ake script, you are first asked
to name the script file you want produced. If
you want this to be a .TEXT file, you must
include the suffix in the title you supply. The
advantage of a .TE.XT f ile is tliat it can be
easily examined or modified by a p-System editor.
A disadvantsge is that it is at least four blocks
long, wliereas a typical nontext file script is only
one block long.

The next prompt asks you to enter the name by
which PRINT slmuld be invoked. Your response
is used as the response to an X(ecute prompt, so
whatever you would use there is appropriate. If
you provide an empty response to this prompt
(that is, an immediate <return>), the program
invocation step is left out of the generated
script altogether. `

After this second prompt, PRINT produces the
script.

Here is an example of M(ake script, along with a
subsequent invocstion of PRINT.

Enteri name of script f ile: MYPRINT

Enter name for invoking p[int: .PRINT

E:xecute what f ile? i=MYPRINT

5-18 Oloo101:05A

Utility Programs

In the first line above, the script file is dubbed
MYPRINT (with no suffix). The second line
indicates that the PRINT program is to be found
on the system disk, with the indicated file name.
The third line is the invocation of PRINT vis the
newly crested script. TTie script will execute
the program and set all the options as they
existed at the time tlie scrit>t was created.

If the second response above liad been empty,
then an equivalent X(ecute string would liave
been '*PRINT i=MYPRINT'.

Summ&ry of Menu ltems

By selecting any of the optio"5 below, you can:

I(nput Choose the file to be printed.

O(utput Choose the destination of the
print operation.

G(o Print the input file on the
output, 8ccording to tlie current
option settings.

A(dvance Skip to the next page on the
Output.

M(ake script Build a script file which will
invoke PRINT with the current
option settings.

0100101:05A 5-19

Utility Programs

Q(uit Leave PRINT.

D(ouble space Select single-or doubleipaced
Output.

N(umber Cause each line to be preceded
by its sequence for the current
Page.

S(top Specify whether single sheet
loading or continuous forms ai.e
assumed by PRINT.

U(se ASCII FF Specify whether the form feed
character or a sequence of
empty lines is used to sepsrate
output pages.

F(i,.st psge

T(op margin

Specify the page number on the
first page of a document.

Specify the number of blank
lines between the top of the
page snd the header line.

B(ottom margin Specify the number of blank
lines between the last line of
text and the bottom of the
Page.

P(a8e size

E(scape

5-20

Specify tlie number of lines per
Page.

Choose the chQracter which
stQrts an escape sequence.

0100101:05A

Utility Programs

C(ommand

H(eader

Choose the character which
starts a command line.

Specify the contents of the
heading line at the top of each
printed page.

Summary of Command Lines

By using the following command, you cai`:

INCLUDE

PAGE

HEADING

COMMAND

ESCAPE

END

0100101:05A

Insei.t sn sdditional file into the
document being printed in place of
the include command.

Cause an immediat? page break.

Specify the contents of the heading
for subsequent pages.

Change the command line flag
character.

Change the escape sequence flag
character.

Tei.minate printing tlie curi.ent text
file,

5-21

Utility Programs

Summsry of Escape Sequences

When sny of the following escspe sequences
occur, tlie indicsted text is substituted:

The current page number.

The current input file name.

The current calendar date as
msintained by the p~System.

5-22 0100101 : 0 5A

Utility Programs

PRINT SP00LEB

The print spooler is a pi.ogram that sUows you to
queue and print f nes concurently with the normal
execution of the p-System (whne tlie console is
waiting for input from the keyboard). The queue it
crestes is a file called *SYSTEMSP00LER, 8nd the
f iles you wish to print must reside on volumes that
are on-line or an error will occur.

When SP00LER is X(ecuted, the following nienu
appears:

Spool: P([int, D(elete, L(ist, S(uspend, R(esun`e, A(bort, C(lear, O(uit

The fonowing paragraphs define the menu options:

P(rint Prompts for the name of a file to be
printed. This name is then added to
the queue. If SYSTEM.SP00LER
doesn't already exist, it is created. In
the simplest case, P(rint may be used
to send a single file to the printer.
Up to 21 files may be placed in the
print queue.

D(elete Prompts for a file name to be taken
out oi the print queue. All
occurrences of that file name are
taken out of the queue.

L(ist

0100101: 0 5A

Displays the files currently in the
queue.

5-23

Utility Progrsms

S(uspend Temporarily halts printing of the
current file.

R(esume %::änauess(usppre!:dt.£n8 R(tehseu m:U:|%tst:;::

printing the next file in the queue
after an error or an A(bort.

A(bort

C(lear

Q(uit

Permanently stops the printing process
of the current file and takes it out of
the queue.

Deletes an file names from the queue.

Exits the spooler utility and starts
transferring files to the printer.

If an error occurs (that is, a nonexistent file is
specified in the queue), the error messsge appears
only when the p-System is at the Command menu.
If necessary, the spooler waits until you return to
the outer level.

Program output to the printer may run concurently
with spooled output. The spooler f inishes the
current file and then turns the printer over to your
program. (Your program is suspended while it waits
for tlie printer.) Your program should only do
Pascal (or other high-level) writes to the printer.
If your program does printer output using unitwrit
the output is sent immediately and appears
randomly interspersed with the spooler output.

5-24 0100101:05A

Utnity Pi.ograms

The utility SPOOLER.CODE uses tlie operating
system unit SPOOLOPS. Within this unit is a
process called spooltask. Spooltask is started at
boot time and runs concurrently with the rest of
the p-System. The print spooler automatically
restarts at boot time if *SYSTEM.SP00LER isn't
empty. When the file *SYSTEM.SP00LER exists,
spooltask prints the files that it names. Spooltask
runs as a bacltground to the main opei`ations of the
p-System.

*SPO0LER.CODE interfaces with SPOOLOPS and
uses routines within it to generate and alter the
print queue within *SYSTEM.SP00LER.

To restart the print spooling process if
SPOOLER.CODE is executing when the system goes
down, reboot the system, press X(ecute from the
Command menu, enter *SP00LER.CODE, and press
<return>. 'ITien press R(esume.

010010l:05A 5-25

Utility Programs

QUICKSTART

Introduction

The QUICKSTART utility can be used to make
programs start more quickly. A progi`am's startup
time is the amount of elapsed time between the
moment the invocation of the `program is
requested and the moment the execution of the
program actually commences. During tliis startup
time the p-System is building the execution
environment for the pi`ogram.

A program's execution environment is a network
of p-System data structures, together with the
areas of memory requii.ed by the pi.ogram for its
data. Each compilation unit contained within the
program has a table in the execution environment
which it uses during its execution to refer to
other compilation units.

The QUICKSTART utility constructs a description
of the execution environment for a program and
generstes a code file for the program which
contains this execution environment description.
The operating system detects the presence of
execution environment descriptions within program
code files and attempts to reconstruct the
required execution envii.onment from such
descriptions when the programs are invoked. For
large programs built out of a collection of
separately compiled p-System units, this
reconstruction process is considerably faster than
the normal execution environment construction
process.

5-26 010010l:05A

Utility PI.08rams

After QUICKSTART has been used on a code
file, that code file may be invoked with the
X(ecute command ss usual.

The reduction in invocation time for a
quickstarted program is achieved by
reconstructing tile Program's execution
environment from the description in the code file
instead of building the environment from scratch
each time the program is invoked. Except for
the difference in invovation time, the execution
of a quickstarted program is identical to thst of
the original progrsm.

When s quickstsi.ted program is executed, the
system first inspects the program code file to
determine if an execution environment description
is present within the progi.am code to reconstruct
the execution environment required by the
program from the description in the code file. If
the code file doesn't contain an environment
description, or the environment description
contained within the code file is obsolete, the
system attempts to build the environment for the
program in the usual fashion.

010 0101 = 0 5A 5-27

Utility Programs

QUICKSTART Utility Operation

This section describes the operation of the
QUICKSTART utility program.

System Environment Preparation

As the first step in using the QUICKSTART
utility, you must set up the system environment
for normal execution of the pi.ogram. This
includes making sure that the proper volumes
are on-line and that any required library files
sre available. Note that the QUICKSTART
utility uses the same components for locating
the units which are referenced by the program
it is pi.ocessing.

QUICKSTART provides a set of toggle options
that control the manner in which the
quickstarting of a program is accomplished.
The settings of these options can influence the
way in which you set up the system
environment prior to running QUICKSTART.
These toggle options are discussed next.

C(opy Toggle Option

The C(opy toggle option determines whether
the output of QUICKSTART is a modified
version of the origind code file, or a new
code file.

5-28 0100101:05A

Utility Programs

In its default setting, the C(opy toggle
option is off. This causes QUICKSTART to
modify the origiml code file. The new
execution environment description is either
sppended to the end of the code file, or will
be written on top of an old description
alresdy present. Using QUICKSTART in this
manner avoids the rather slow process of
making a copy of the original file; however,
there is a chance that the insertion of the
new execution environment description will
fail due to insufficient disk space at the end
of the code file. You should make sure that
a section of unused disk space follows the
code file. Tlie number of unused blocks
which are required depends on the size and
complexity of the pi.ogram.

When the C(opy toggle option is on, a new
code file is created by QUICKSTART and
the execution environment is sppended to the
end of that file. Any previous environment
description embedded in the code file is
discarded. This method of using
QUICKSTART is somewhat slower. But it is
safe and more likely to insue that the size
of the code file can be extended if
necessai.y to install the new envii.onment
description. In order to use QUICKSTART in
this manner, there must be enough disk space
for a copy of the entire code file on one of
the on- line volumes.

0100101:05A 5-29

Utility Programs

L(ibrary Copy Toggle Option

QUICKSTART installs a checksum part
number into the library code files which sre
used by the program. The checksum is
utilized to detect when an environment
description has become obsolete due to a
change in one of those library code f iles. A
new cliecksum is only inserted into s library
code file if that file lacks s vslid checksum.
Because of this, it must be possible for
QUICKSTART to write to the volumes
containing library code files witliout valid
checksums.

With some p-System installstions, a
referenced library code file msy reside on a
RAM disk rather tlian a physical disk. When
QUICKSTART updates such a code file, the
updated infoi.mation will be lost the next
time the computer is powered of f. As an
aid to users who use RAM disk, the
QUICKSTART utility has another toggle
option called L(ibrary copy. When the
L(ibrary copy toggle option is on,
QUICKSTART first updates the origiml copy
of a referenced library code file witli a new
checksum, and then asks you if the updated
libi`8ry code file ?ontents should be copied to
another file. Thus this facility can be used
to save the updated library code files on a
physical disk.

5-30 0100101:05A

Utility Programs

M(essages Toggle Option

The QUICKSTART utility has the capability
of writing detailed progress messages to the
console. These progress messages provide
you with the names and locations of the
compilation units which are being included
within the execution environment for the
program being quickstarted. In addition,
these messages advise you of the copying or
modification of code files. Most of the time
you won't require the large amount of
information provided by the progress
messages. The information can be useful,
however, when you are trying to diagnose
the cause of a malfunction in a progi.am.
The QUICKSTART utility has a M(essages
toggle which controls whether or not
progress messages are displsyed. The default
.setting of the M(essages toggle option is
OFF, which results in the progress messages
being suppressed.

Using The. QUICKSTART Utility

The QUICKSTART utility
(QUICKSTART.CODE), displays this menu:

Quickstart: P([ogram, S(ystem, C(opy, I,(ib[ary, n(essages, Q(uit
Toggle settings: Copy OFF, l,ibrary copy OFF, Messages OFF

0100101:05A 5-31

Utility PI.ogl.ams

5-32

The first line sliows the set of commands
recognized by QUICKSTART. The second line
displays tlie current settings of the toggle
options. The toggle option settings sliown
above are the default settings.

The C(opy, L(ibrary, and M(esssges commands
cause the setting of the corresponding toggle
option to be changed. After you select one of
these commands, the appropriate toggle option
display is updsted to reflect the change.

The P(rogram command is the command which
is used to initiate the process of quickstarting
a program. The operation of the P(rogram
command is described in the fouowing section.

The S(ystem command directs the QUICKSTART
utility to build a description of the p-System
opersting system environment into a new
system code file. This command is typically
used on]y by sophisticated p-System users who

:::ecr:i::i.ng aT::W.g|esryastti:T o.?er:::ngs(syyss:::
command is basically the same as the opei.ation
of the P(rogram command described in the
following section. The following section
contains a supplemental description of the
S(ystem command.

The Q(uit command is used to exit the
QUICKSTART utility program.

The QUICKSTART utnity menu is displayed
after the completion of each P(rogram or
S(ystem command.

0100101:05A

Utility Programs

The error messages which may be output by
the QUICKSTART utility are listed and
explained later. Generally, any error causes
the processing associated with the current
QUICKSTART command to be aborted and any
output fi]e discarded. QUICKSTART may
occssionally generate warnings which appear in
the form of a message on the console. These
warning messages are also listed later in this
chapter.

P(rogram Command

When the P(rogram command is entered, you
are prompted:

Quickstart what program?

You should enter the name of the code file to
be quickstarted (.CODE is appended to the
name you enter if necessary). A plain <return>
causes the current command to be canceled and
the QUICKSTART menu to be displayed.

Once the input code file has been successfully
opened, the action taken by QUICKSTART
depends on the setting of the C(opy toggle
option. If the C(opy toggle option is embled,
QUICKSTART prompts for the output file.

To what codef ile?

010010l =05A 5-33

Utility Programs

An empty <return> cancels the curi`ent
commsnd and returns to the QUICKSTART
menu. You may utilize the "S" character in
the response to tliis pt.ompt to denote the
corresponding file name. For example, if tlie
input file was 'MYDISK:BIGPROG.CODE' and
your response to the sbove prompt is'NEW.DISK:S', QUIchsTART would generate the
output file 'NEWDISK:BIGPROG.CODE'.

QUICKSTART automatically concatenates the
suffix ''.CODE" to the output file, unless you
terminate the file name with a period. If you
do terminate the file name with a period,
however, a data file (rather than a code file)
is created. You can ci.eate SYSTEM.PASCAL
in this manner, but all other files must be
created as code files (or they won't be
executable).

Once the input file and the output file have
been opened, QUICKSTART proceeds to create
a copy of the original program code f ile. The
code segments contained within the original
program code file are copied one st a time and
any old environment description for the
Progrsm isn't copied.

5-34 010010l:05A

Utility Progi`ams

When the M(essage toggle option is on,
QUICKSTART displays a messsge at the start
of the copying process which identifies the
source and destination files involved in the
copying. When tlie copying is completed,
QUICKSTART displays the message "Copying
complete." along with a report on the number
of blocks which were copied.

Also, when the M(essages toggle option is on,
the QUICKSTART utility displays messages
which identify the names and library code file
locations.of the individual units and segments
which are included in the description of tlie
execution environment of the pi`ogram. The
following is an example of the messsges that
appesr during a typical QUICKSTART P(rogram
command:

Ouickstart: P([ogram, S(ystem, C(opy, L(ibrary, M(essages, O(uit (
Toggle settings: Cop}' ON, Library copy OF`F`, Messages ON
Quickstart what progran? M¥DISK:Supf:RPROC.CODE
To what codefile? NE:Wl)ISK:S
Copying MYDISK:SUPE:RPROC.CODE to NEmlsK:SUPERPROG.CODE
Copying complece. (278 blocks copied)
Üsirig K£RNE:l, f [om .SYSTEM.PASCAL
lncluding PROCINIT as segment of SUPE,RPRO f rom NEWDISK:SUPE:RPROG.COD
Using SUPERPRO f rom NE:WDISK:SUP£RPROG.CODE
Using PASCALIO f rom .SYSTE;M.PASCAL
Using lJEAPOPS f roni *SYSTE:M.PASCAL
Üsing PACEMGR from ALTDISX:PAG£MGR.CODE:
Installing new checksum into ALTDISK:EXPR.CODE
lnstalling ne. checksum into .SYSTEM.LIBRARY
Using LONGOPS from .SYST£M.LIBRAR`'
Including FACTOR as segment of E:Xm from ALTDISX:EXPR.COD£
Using EXPR f rom ALTDISK:EXPR.CODE

Quickstart const[iiction coiT`plet®.
Quickstart: P(rogram, S(}.stem„ C(op}', L(ibTar}., M(essages, 0(uit (

0100101:05A 5-35

Utility Pi.ograms

A messsge of the form "Using UNITNAME from
FILE.NAME" reports the. inclusion of the unit
UNITNAME which is located in the code file
FILE.NAME into the description of the
execution environment for the pi.ogram. A
message of the form "Including SEGNAME as
segment of UNITNAME from FILE.NAME"
reports the inclusion of the segment SEGNAME
as a part of the unit UNITNAME located in
the library code file FILE.NAME.

A message of the form "Instslling new
checksum into FILE.NAME" informs you of the
fact that QUICKSTART is attempting to install
a checksum into ijbrary code file FILE.NAME.

When a iibrary code fiie is updated with ä new
checksum and the L(ibrary copy toggle option
is on, QUICKSTART asks you if a copy of the
updated library code f ile is desired:

Cop}. updated f ile FiLE.NAME:?

This prompt is repeated until you respond with
a 'Y' or 'N'. If you press 'Y', QUICKSTART
prompts for the file to copy the updated
library code file:

Cop}. to .hac codef ile?

5-36 010010l:05A

Utility Programs

An empty <return> cancels the copying
operation. The fonowing is sn example of a
libi.ary code file copying operation during a
P(rogram command:

Installing new checksum into RAMDISK:S¥STEM.LIBRARY
Copy updated f ile RAMDISK:SYSTEM.LIBRARY? Y
Cop}. to what codefile? MYDISK:S.
Copying RAMDISK:SYSTEM.LIBRARY to MYDISK:SYSTE:M.LIBRARy
Cop}.ing c.omplete. (34 blocks copied)

S(ystem Command

The system command is used to quckstart the
operating system (SYSTEM.PASCAL). This is
intended to make the p-System boot more
quickly.

NOTE: Althougli the S(ystem command is
implemented within QUICKSTART, the
operating system doesn't currently take
advantsge of it. This means the p-System will
boot with the same speed whether or not the
operating system is quickstarted. Quickstarting
of the opersting system will be supported in a
futue release of the p-System.

0100101=05A 5-37

Utility Programs

The S(ystem command directs QUICKSTART to
install an environment description into a system
code file pi.esumed to contsin the operating
system. The operation of the S(ystem command
is identical to the operation of tlie P(rogram
command with the fouowing exceptions:

• The genei.ated environment description
includes all of the units which reside in the
system code file being processed, even if a
subset of the units aren't referenced by the
standard p-System units.

• The generated environment description
doesn't contain references to the p-System
code file in use at the time when the
QUICKSTART utility is executed.

• An unresolved unit reference causes a
warning message to appesr on the console
instead of resulting in a fatal error which
terminates the processing associated with
the command. Thib sllows the p-System to
contain references to units which provide
the support for optional p-System
components.

• The system code file must contain a unit
with the name KERNEL, 8nd that unit must
have a subsidiary segment with the name
USERPROG.

5-38 0100101:05A

Utility Programs

In the current p-System implementation, all of
the units referenced within the operating
system must i.eside in SYSTEM PASCAL.
QUICKSTART doesn't enforce or check for this
restriction however. In addition, QUICKSTART
doesn't enforce or checl< for otlier
implementation restrictions on the structure or
type of units which can be placed in SYSTEM
PASCAL.

Obsolete Environment Descriptions

Once sn execution environment description is
instaned in s code file, it will be utilized to
quickly construct the program's execution
environment as long as the description doesn't
become obsolete. An execution environment
description becomes obsolete when one or more
of the fouowing alterations are made to the
pLsystem environment in which the program is
executed:

• SYSTEM.PASCAL is changed and the
program contains a reference to an
operating system unit which is no longer
available.

• A referenced library code file is recompiled,
reassembled, or altered using the p-System
LIBRARY utility.

• A referenced library file can't be found
after searching on the following volumes:
the origind volume where i.eferenced, tlie
prefix volume, the root volume.

0100101:05A 5-39

Utility Programs

Retention of the exact volume locations of
referenced library code f iles result in optimal
program invocation times. An individual library
code file may be moved to a different physical
location on the same volume without any
resulting increase in program invocation time.

As mentioned previously, when an execution
environment description becomes obsolete, it is
still possible to execute the program. In such
a situation, the p-System ignores the obsolete
environment description and proceeds with the
normal invocation of the program.

5-40 Oloo101:05A

Utility Programs

QUICKSTART Error Messages

The fouowing is a list of the error messages
which can be generated by the QUICKSTART
utility program. Following each error message is
a brief description of the error.

• Quickstart construction complete

This is not an error message, but instead
indicates successful completion of the
QUICKSTART environment description
generation process for a given program.

• Can't find FILE.NAME

lndicates tliat the specified code fne couldn't
be found.

• Error resding library FILE.NAME

An 1/0 error was detected by QUICKSTART
when resding the specified library code fne.

• Error inserting checksum into FILE.NAME

An 1/0 error was detected by QUICKSTART
when inserting a new checksum into the
specified library code file.

• Error creating FILE.NAME

An 1/0 error was detected by QUICKSTART
when creating the indicated library code file
Copy.

0100101:05A 5-41

Utility Progrsms

• Error reading FILE.NAME

An 1/0 error was detected by QUICKSTART
when reading the indicated code file
FILE.NAME.

• Error writing FILE.NAME

An 1/0 error was detected by QUICKSTART
when writing to the indicated code file.

• Library list file FILE.NAME isn't a text file

The indicated file was specified as a library
text file, but it isn't a text fne.

• 1/0 eri`or reading library list file FILE.NAME

An 1/0 error was detected when reading the
indicated text file which was specified as a
libi.ary text file.

• Warning: Library FILE.NAME not found

The indicated file was included on the library
code file search list but couldn't be found.
This is treated as a warning snd not a fatal
error since the missing library file is simply
omitted from the list of library code files to
search.

5-42 0100101=05A

Utility Programs

• Warning: UNIT NAME unit not found

The indicsted unit is referenced by the system
code file being processed by the QUICKSTART
utility but can't be found. This is treated as
a warning instead of a fatal error since the
operating system is allowed to contain
references to optioml system units.

• Unit UNIT NAME not found

The indicsted unit is required by tlie pi.ogrsm
being processed by QUICKSTART, but it can't
be found within the program's code file or
within one of tlie library code fnes.

• Duplicate unit UNIT NAME

'niis error indicates that there is more than
one unit within the program's execution
environment with the indicsted name. This
error can occur if there is more than one unit
with the name within SYSTEM.PASCAL or
when the name of the program is the same as
the name of one of the units which reside in
SYSTEM .PASCAL.

0100101 :05A 5-43

Utility Programs

• Too many library code files referenced

The required execution environment for the
program contains references to more individual
library code files than can be handled by the
system. The current implementation allows an
execution envii.onment to contain references to
at most 50 distinct library code files. TT`is
limitation can be woi.ked around by using the
LIBRARY utility to package severa] units into
s single library code file. With the exception
of SYSTEM.PASCAL, there is no limit on the
number of units which can be packsged into a
library code file.

• Too many system units referenced

The requii.ed execution environment for the
progrsm contains references to more system
units than can be handled by the system. A
"system" unit is defined to be any unit which
resides in the system code file
SYSTEM.PASCAL. The current implementation
allows an execution environment to contain
references to st most 50 distinct system units.

• No program in code file to execute

The code file to be executed doesn't contain
a segment which is classified as being a host
progpam. A unit by itself isn't an executable
program. (This error can also appear when
the QUICKSTART utility S(ystem command is
used and the system code file being processed
doesn't contain a unit with the name
"KERNEL".)

5-44 010010l:05A

Utility Progrsms

• System code file doesn't contain a USERPROG
segment

This error messsge appears when the
QUICKSTART utility S(ystem commsnd is used
and tlie system code file being processed
doesn't contsin s segment with the name
''USERPROG".

• Unit UNIT NAME must be linked via L(ink
command

The indicated unit contains references to
assembly language routines which must be
linked into the program by SYSTEM.LINKER
befoi.e the program can be invoked.

• Segment SEG NAME is sn obsolete code
segment

The indicated code segment must be
recompiled or reassembled with a more recent
compiler or sssembler before it can be
executed on the current system.

• Insufficient memory to build environment

The amount of available memory isn't
sufficient to allocate the structures required
to construct the execution environment for the
program being invoked. The best work around
for this situation is to reduce the number of
sepsrate library code files on the library code
f ile search list and to reduce the total number
of segment dictionary blocks which are
contained within those libi`ary code f nes.

0100101:05A 5-45

Utility Progi.ams

• Environment descriptor buffer overflow

lnternal ei`ror in the logic of the
QUICKSTART utility.

5-46 0100101:05A

Utility Progrsms

REAL CONYERT

The REAL CONVERT utility can make some
programs run more quickly. It converts real
constants in a code file from canonicd (compiled)
form to nstive mschine formst. It eliminates the
need to convert real constants st segment load
time, thus increasing the initial loading speed of
the program segments, as well as the overall
run-time speed of the progi`am. 'n`is is especially
importsnt for programs that require frequent
loading of segments containing real constants.

The resl corBtsnt conversion utility is a fi]ter that
works on code files, replacing canonical reals with
run-time reals in-place. Hence, when the source
f ile isn't svailable, you should make a bacl(up copy
of the code f ile to be processed before executing
the utility progi`am. Tliis avoids the possibility of
destro.ying the code file while executing REAL
CONVERT with an unsuccessful write to disk.

Because tlie conversion algorithm uses real
arithmetic of tlie host pi`ocessor, the utility must
be executed on the processor on wliicli tlie output
file will run. In most csses, a code file produced
by the utility won't run on another processor,
reducing the portability of otherwise transportable
code®

0100101:05A 5-47

Utility Programs

To use the utility, X(ecute REALCONV from the
Command menu. It responds with the following
prompt:

ENTER FII.E NAME:

Respond by entering the name of the code file to
be processed, followed by <retui.n>. You don't
have to append the suffix .CODE.

If REAL CONVERT can't find the file, it prints
the message 'File not found' and asks you to enter
the file name again. Once a correct f ile is
entered, REAL CONVERT begins translating.

If REAL CONVERT can't complete the conversion
successfully, it prints a message and stops. `It`e
messages can be:

f`ot enough memo[y

e[ro[in [eading...
The dots stand fo[:

8egment dictionaries
f i[st block
constant pool
Segment
(as the case may be).

er[o[in vriting segment

too many dictionariee

'Not enough memory' means that the segment to be

processed is larger than the available memory
Space.

5-48 0100101:05A

Utility Programs

If the message is 'error in reading...', X(ecute
REALCONV agsin.

If the message is 'error in writing segment', then,
before X(ecuting REALCONV agsin, you have to
restore the code file. Restoring tlie code file
depends on the avsilability of the source file. If
the source file is available, compile it again and
save the code file. If only the code file was
origimny available, make a copy of the backup
code file. (Remember to backup the origiml code
file.)

'Too many dictionaries' means that you have more
than 80 segments in the file.

TTie probability of getting any of tlie three
messages is extremely slight, but it can liappen.

If REAL CONVERT executes successfuny, a dot is
written on the console for eacli segment converted;
and, once the conversion is completed, the message
'Enter ffle name:' is displayed so you can process
another file. When there are no more files to
process, answer the prompt by pressing <return>.
This exits REAL CONVERT and returns you to the
Command menu.

010010l=05A 5-49

Utility Programs

LIBRARY

LIBRARY.CODE is a utility program tliat anows
you to group separate compilstions (units or
programs) and separately assembled routines into a
single file. A library is f` concatenation of such
compilations and routines. Libraries are a useful
means of grouping the separate pieces needed by a
program or group of pi.ogrsms. Manipulating a
single library file takes less time than if the
various pieces it contains were each within an
individual file. Libraries generally contain routines
relating to a certain area of spplication; they can
be used for functional groupings much as units can.
Thus, you might want to maintsin a math libi.ai.y, 8
dsta file-management library, and so forth-each of
these libraries containing routines general enough to
be used by many programs over a long period of
time®

Individual programs might also take advantsge of
the library construct. If a program uses several
units suitable for compiling separately, but the
units themselves are too small to warrant putting
each into its own file, you would want to construct
a single libi.ary containing all of those units.

Even if a file contains only s single unit or
routine, it is treated ss a library when the unit or
routine is used by some external host.

Library is useful for putting units into
SYSTEM.LIBRARY or otlier libraries and grouping
assembly routines togetlier.

5-50 Olool o1:05A

Utility Programs

This section uses the term compilation unit. A
program or unit end all the segments declared
inside it sLre called a compilation unit. The
segment for the program or unit is caued the host
segment of the compilation unit. Segment routines
declared inside the host are called subsidiary
segments. Units used by the host aren't segments
belonging to that compilation unit. Units used by
the compilation unit generste informstion in the
host segment caued segment references. The
segment references contain the names of sll
segments referenced by a compnation unit, and the
operating system uses this information to set up a
run-time environment.

Some routines called from hosts exist in
the operating system and, therefore, appear
segment references, even thougli there is no
explicit USES declaration. For example, WRITELN
resides in the operating system UNIT PASCALIO, so
the name PASCALIO arpears in tlie segment
references of any host that caus WRITELN.

Using l,ibrary

When Library is executed, it displays a prompt
asking for an output file name. The file name
must end in .CODE. Library removes an old file
with the same name as the new library.

Library then displays a prompt asking for the
input file name. .CODE is sutomaticslly
appended.

0100101=05A 5-51

Utility Programs

Library ExaDple

You specify SCREENOPS.CODE as an input file.
Librai.y displ8ys the fouowing listing.

Library: N(ew, 0-9(slot-to-slot, E(very, S(elect, C(omp-unit, F(ill,?

Input file? SCREENOPS<return>
0 u SCREE:NOP S82

1 s SE;GSCINI 508
2 s SEGSCPRO 229
3 s SEGSCCHE 126

0utput f ile? NEW.CODE<return>

The preceding displsy shows that the file
SCREENOPS corBists of one unit and three
segment routines. There are four possible types
of code that can occupy the slots in a librsry:
units, pi.ograms, segment routines, and assembled
routines. Library displays the type, along with
the nahe and length (in words) of esch module.

5-52 0100101:05A

Utility Programs

Library's menu shows the various commands
available.

• The N(ew command displays a prompt asking
for a new input file.

• The A(bort command stops Library without
saving the output f ile.

• The Q(uit command stops Library and saves
the output file. Then Library displays the
prompt, 'Notice?', at the top of the screen.
Enter copyright notice and press <i.eturn>. It
is placed in the output f ile's segment
dictiomry. Pressing <return> without entering
a copyright notice exits Library without
writing a copyright notice.

• The T(og command toggles s switch that
determines whether or not INTERFACE parts
of unit§ are copied to tlie output ffle.

• The R(efs command lists the names of each
entry in the segment reference lists of all
segments currently in the output file. 'me
list of names also includes the names of all
compilation units currently in the output fne,
even though tlieir names may not occur in any
of the segment references.

0100101:05A 5-53

Utility Programs

The remaining five commands allow code segments
to be trarßferred fi.om the input file to the
output file.

• A given slot can be transferred to the output
f ile by entering a digit (0 through 9). Library
then displays a prompt: 'Copy from slot # ?'
along with the digit just entered. If thst is
the name of the slot, press <spsce>. If tliat
is the first digit of a twoiigit slot number,
entei. tlie second digit and press <space>.
Libi.ary confirms the entry before actually
copying code. Press <backspace> to correct
errors. If you press <i.eturn> without entering
a number, the copy doesn't happen and Libi.ary
redisplays its menu.

If the destination slot in the output file is
already filled, the system displays a warning
and no copy takes place. If an identical code
segment is already present anywhere in the
output file, the new code segment is copied
snyway.

• The E(very commsnd copies all of tlie codes in
the input file to the output file. If, for any
code segment, the corresponding slot in the
output f ile is alread filled, then Library
searches for the next avsilable slot and places
the code there. If, for any code segment, an
identical code segment already exists in the
output file, thst segment isn't copied over.

5-54 0100101:05A

Utility Programs

• TTie S(elect command causes Library to display

:rakrfoeT.ptFa.S,kienagchwch.igehs:;::n,Seng.?e:|trseaä;
in the output file, Library displays the
prompt: 'Copy from slot # ?'. Pressing 'Y'
or 'N' csuses the segment-to be copied or
passed by; pressing 'E' causes the remainder
of the code segments to be transferred (as in
E(very); pressing <space> or <return> aborts
the S(elect. If the corresponding slot in the

. output file is f illed, Library searches for the
next available slot and plsces the code there.

• C(omp-unit causes Library to displsy the
prompt: 'Copy what compilation unit?'. The
compilation unit named is transferred along
with any segment procedures that it
references. Procedures already present in the
output file aren't copied.

• F(ill does the equivalent of a C(omp-unit
command for all the compilation units
referenced by the segment references in the
output file.

• I(nput displays the next page of the segment
dictionary in the input f ne. (If there are
more than 16 code segments in the file, two
or more segment dictionary pages are
required.)

• O(utput displays the next page of the segment
dictiomry in the output file.

0100101:05A 5-55

Utility Progi`ams

SETUP

SETUP is pi.ovided as a system utnity that ''sets
up" the p-System to propei.ly interfsce with your
hardware. It resides in s file called SETUP.CODE
and creates a dsta file containing detailed
information about your terminal and a few
miscellaneous details about the system. You can
run SETUP and change the dats as many times as
you want. After running SETUP, you must reboot
so that the system stsrts using the new
information. (In some cases, you csn just
I(nitiQlize.) You should also bsckup the old data
f ile-at least until you're sure tliat the new one is
correct.

SETUP takes its initid information from a file
caued SYSTEM.MISCINF0 and can create a new
version of that file caued NEW.MISCINFO. The old
version must be removed or renamed and the new
version renamed SYSTEM.MISCINFO before some of
the chsnged values it may contain can become
effective.

SYSTEM.MISCINFO contains tliree types of
information:

1. Miscenaneous dats about the system.

2. Genei.al information about the terminal.

3. Specific information about the termiml control
keys.

5-56 010010l:05A

Utility Progrsms

Running SETUP

Run SETUP like sny other program with the
X(ecute commsnd. It will display tlie word
'INITIALIZING' followed by a string of dots, 8nd
then the menu:

SETUP: C(HANGE T(EACH H(ELP O(UIT [version]

To select any option, just press its initial letter.

When H(ELP appears on a menu, it can describe
all the options on that menu.

T(EACH gives a detailed description of how to
use SETUP. Most of it concerns input formats,
which are minly self-explanstory. However, if
this is your first time running SETUP, you should
look througli sU of T(EACH.

C(HANGE gives you the option of going through
s prompted menu of all the items or of changing
one data item at a time. In either case, the
current values are displayed, and you have the
option of clianging them. If this is your first
time running SETUP, the values given sre the
system defaults. You will find tliat your
particular terminal pi.obably requires dif ferent
specifications.

Oloo101:05A 5-57

Utility Prog.i`ams

Q(UIT has the following options:

H(ELP).

M(EMORY) UPDATE, which places the new
values in main memory.

D(ISK) UPDATE, which creates NEW.MISCINFO
on your disk for futue use.

R(ETURN), which lets you go back into SETUP
and make more changes.

E(XIT), which ends the program and returns
you to the Command menu.

Please note that if you have a NEW.MISCINFO
already on you disk, D(ISK) UPDATE will write
over it.

When you use SETUP to change your character
set, don't underestimate the importance of using
keys you can easily remember and of making
dangerous keys, like BREAK, ESCAPE, and
RUBOUT, hard to hit.

5-58 0100101:05A

Utility Programs

Once you have run SETUP, always backup
SYSTEM.MISCINFO under another name.
(OLD.MISCINFO is one suggestion.) You also
might want to name your backups sccording to
different terminals; for example, ADDS.MISCINFO,
IQ120.MISCINFO, TELUD.MISCINFO, and so on.
Then, change the name of NEW.MISCINFO to
SYSTEM.MISCINF0 and reboot. You can also
update to memory, alone, and continue using the
system without rebooting. However, the results
of your doing this msy not always be what you
wanted-and you won't have a bacl{up. In
general, M.(EMORY UPDATE is s Q(UIT option
you will use only when experimenting. If you do
run into trouble, remember that yo_u can save the
current in-memoi.y SYSTEM.MISCINFO by running
SETUP and performing a D(ISK) UPDATE before
you change any data items.

When you reboot or I(nitialize, the new
SYSTEM.MISCINF0 will be read into main memory
and the system win use its data, provided it has
been stored under that name on the system disk
(the disk from which you boot).

The onl}' thing SETUP won`t arrange for }'ou` as
far as terminal handling goes. is to tell the
system how to do random cursor positioning for
your terminal. This is a feature that the
Screen-Oriented Editor requires. To learn how to
support this capabilit}'. see the section on the
SCREENOPS unit in the UCSD p-S
Develo

•stem Pro

ment User Guide.

0100101:05A 5-59

Utility Progi.ams

Miscell&neous Notes for SETUP

ln general, if SETUP prompts for a feature that
your terminal doesn't have, set the item to NUL
(zero).

Set your terminal to run in full duplex, with no
auto-echo.

Don't use terminal functions that do a ''delete
änTaTciose up" on iines or characters-not sii
terminsls have these functions, so they are
supplied through the Screen-Oriented Editor's
software.

You can use SETUP to specify two- or
threeiharacter control (escape) sequences from
the terminal keyboard.

5-60 0100101:05A

Utility Programs

If you use the ANSI SCREENOPS unit, instead of
the stsndard SCREENOPS, the p-System ignores
sll of SETUP's screen parameters. TT`ey include:

BACKSPACE
ERASE LINE
ERASE SCREEN
ERASE T0 END OF LINE
ERASE TO END 0F SCREEN
LEAD IN TO SCREEN
MOVE CURSOR HOME
MOVE CURSOR RIGHT
MOVE CURSOR UP

ln previous versions of the p-System, there wei.e
only 6 storage devices (4, 5, 9 through 12). The
number of storage devices is now configurable
with SETUP. After tlie liigliest-iiumbered storage
device, subsidiary volumes are sllocated device
numbers. The number of subsidiary volumes is
also configurable. Above the highest-numbered
device set aside for subsidiary volumes,
useri]efined serial devices may be defined. The
maximum number of user-defined serial devices is
16. The highest unit number a]1owed for any of
tliese devices is 127. The following fields
allocate these unit numbers:

FIRST SUBSIDIARY VOL NUMBER
MAX NUMBER 0F SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS

These fields are described below.

0100101:05A 5-61

Utility Programs

The memoi`y update feature of SETUP doesn't
update any of the following f ields:

HAS SPOOLING
HAS EXTENDED MEMORY
CODE P00L SIZE
CODE POOL BASE[FIRST WORD]
CODE P00L BASE[SECOND WORD]
SEGMENT ALIGNMENT
FIRST SUBSIDIARY VOL NUMBER
MAX NUMBER OF SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS

ln order to update these fields, create a new
SYSTEM.MISCINF0 on the boot disk and reboot.

5-62 0100101:05A

Utility Programs

SYSTEM.MISCINPO - Data ltems

The informstion in this sect!on is very specific;
you may skip it on first reading. However, if
you have a question about a certain dsta item,
look in thi§ section. Defsult values are shown
snd, sometimes, are our recommendstions. When
no suggested values are given, you should consult
your own terminal's documentation. The items
are ordered according to SETUP's menu.

If you are using a hard copy terminal or a
storage screen, rather tlian a CRT, you can
ignore au the data items thst are ony used by
the Screen-Oriented Editor, leaving them set to
their defaults. In particular, if you are in doubt
about a particular item, it is safest to leave it
set to NUL. 4!]±!g]zg leave items set to NUL
that concern features that your terminal doesn't
have (ERASE LINE, for instsnce); the software
takes care of these situations.

Please note thQt SETUP frequently distinguishes
between a character that is a key on tlie
keyboard and a character thst is sent to the
screen from the system; on some terminals, two
different characters msy perform the same
function. On other termimls, the key pressed
snd the character sent for a given function may
be the same.

0100101:05A 5-63

Utility Pi.ograms

There ai`e a few characters you can't change
with SETUP. These are CARRIAGE RETURN
(<return>), LINE FEED (<lf>), ASCII DLE
(CTRL-P), and TAB (CTRL-I). It is assumed that
<return>, <lf>, 8nd TAB are consistent on all
terminals. ASCII DLE (dsts link escspe) is used
as a blank compi`ession character. When sent to
an output text file, it is always followed by a
byte containing the number of blanl(s which the
output device must insert. lf you ti.y to use
CTRL-P for any other function, you will run into
trouble,

BACKSPACE

When sent to the screen, tlie backspace character
should move the cursor one space to the left.
Default: ASCII BS.

CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SECOND WORD]

Use these two entries to determine where the
code pool resides on machines that use extended
memory.

5-64 0100101:05A

Utility Pro8rsms

On some extended memory systems, these two
words, tsken together, make up the 32 bit
address for the base of the external code pool.
The FIRST WORD is the mostsignificant 16 bits,
and the SECOND WORD is the leastiignificant
16 bits. TT]e leastsignificant four bits must
slways be 0 on 8086 systems. Depending upon
your memory configuration, for 8086 systems you
might set these v81ues as follows:

FIRST WORD = 1
SECOND WORD = 0

This indicates the binary value of 1 fouowed by
16 zeros (the start of the second 64K area).

On 9900 systems, tlie FIRST WORD is the 990/10
memory BIAS. (This isn't a straight memory
address; see your hardware manual for more
information concerning 9900 BIAS.) It defines
tlie start of the code pool sre8. The SECOND
WORD isn't used. There is no ei.ror checking
done on this vslue, anywhere, except by the 9900
hardwsre.

NOTE: The PoolBase field in the Pooldes record
within the operating system will be set to the
value indicsted by these two fields. If the code
pool is intei.nal (that is, you aren't using
extended memory), set both words to 0.

Oloo101:05A 5-65

Utility Programs

NOTE: Don't execute .RELPROC and .RELFUNC
assembly language routines on TI 9900 systems
when an external code pool is being used.
Attempting to execute such a routine results in
run-time error number 11 (instruction not
implemented). Use .PROC and .FUNC, which
forces code to be placed in the heap-instead of
the external code pool.

CODE POOL SIZE

lf the code pool is extemal, this entry indicates
the number of WORDS, minus one, available for
it to f in. The Poolsize field in Pooldes will be
set to this value. This value may be as grest as
32767 (a 64K area). It may also be smaller, if
desired, but it should be at least 12287 (a 24K
are8). The base address of this ares is given by
the two code pool base words. This.value is
ignored if you sren't using extended memory.

EDITOR ACCEPT KEY

This key is used by the Screen-Oriented Editor.
When pressed, it ends the action of a command
and sccepts whatever actions were taken.
Default: ASCII ETX.

5-66 0100101:05A

Utility Programs

EDITOR ESCAPE KEY

This key is used by the Screen-Oriented Editor.
It is the opposite of the EDITOR ACCEPT
KEY-when pressed, it ends the action of a
activity and ignores whstever actions were tsken.
Defsult: ASCII ESC.

EDITOR EXCHANGE-DELETE KEY

This key is 81so used by the Screen-Oriented
Editor. It .operates only while doing an X(change
and deletes a single character.

EDITOR EXCHANGE-INSERT KEY

Like the EDITOR EXCHANGE-DELETE KEY, this
only operates while doing sn X(chsnge in the
Screenoriented Editor-it inserts a single space.

ERASE LINE

When sent to the screen, this character erases all
tlie characters on the line that the cursor is on.

ERASE SCREEN

When sent to the screen, this character erases
the entire screen.

0100101 : 05A 5-67

Utility Prog,.ams

ERASE TO END OP LINE

When sent to the screen, this cliaracter erases au
characters, starting at the current cursor position
to the end of the same line.

ERASE TO END OF SCREEN

When sent to the screen, this character erases sll
charactei.s, starting st the current cursor position
to the end of the screen.

FIRST SUBSIDIARY YOL NUMBER

This entry is the first unit number to be used as
a subsidiary volume. For example, if you set it
to 14, the first subsidiary volume is device #14:.

NOTE: In previous versions of the p-System,
only 6 stoi.8ge devices were sllowed: 4, 5, 9
through 12. Now the number of storage devices
is conf igurable. The devices from 9 tlirough
''First subsidiary vol number" -1 are now stsndard
storsge devices. Subsidiary volumes start with
the device number indicated by ''First subsidiary
vol numtxr." The number of subsidiary volumes
is detei`mined by ''Max number of subsidisry vols."
The liighest device number sllowed for subsidiary
volumes, standard storage devices, or useriefined
serial volumes (described below) is 127. (The
device numbers 128 8nd sbove are reserved for
user-defined devices.

5-68 010010l:05A

Utility Programs

WARNING: ''First subsidiary vol number" must be
greater than s to allow space for an of the
standard system units.

HAS 8510A

Should always be false.

HAS BYTE PLIPPED MACHINE

This may be TRUE or FALSE. On PDP-11,
LSI-11, 8080, Z-80, 6502, 8086, 8088, and
HP86/87 processors this bit is FALSE. On the
68000, 9900, and 6809, it is TRUE.

HAS CLOCE

This value may be TRUE or FALSE. If your
hardware has a line frequency (60 Hz) clock
module, sucli as the DEC KW11, setting this bit
TRUE sllows the system to optimize disk
directory updates. It also allows you to use tlie
TIME intrinsic. If your hardware doesn't hsve a
clock, this must be FALSE. (If you are using the
adsptable system, you must write your own
clock-handler; until it is installed, this item must
be FALSE.)

0100101=05A 5-69

Utility Programs

HAS EXTENDED MEMORY

Wlien extended memory isn't used, the code pool
resides between the stack and the heap. If the
code pool is i.emoved from that memory space
and placed in a different ares altogether, then
set HAS EXTENDED MEMORY to TRUE;
otherwise, set it to FALSE. (An example of
extended memory is a 128K byte machine where
the stack and heap reside within one 64K ai.ea,
and the code pool i.esides within the other 64K
area.)

HAS LOWER CASE

This may be TRUE or FALSE. It should be
TRUE if you do have lowercase and want to use
it. If you seem stuck in uppercase, even if this
bit is TRUE, remember there is a soft alpha-lock:
see KEY TO ALPHA LOCK.

HAS RANDOH CURSOR ADDRESSING

This value may be TRUE or FALSE. If your
tei.minal isn't a CRT, this should be FALSE.

HAS SLOW TERMINAL

This value may be TRUE or FALSE. When this
bit is TRUE, the system's menus and prompts are
abbreviated. You should leave this set to
FALSE, unless your termin81 runs at 600 baud or
slower.

5-70 0100101=05A

Utility Programs

HAS SPOOLING

Set this to TRUE, if the PRINT SP00LER is to
be used. If this field is true in
SYSTEM.MISCINF0 and SP00LOPS hasn't been
LIBRARYed into SYSTEM.PASCAL, the p-System
won't boot.

HAS WORD ORIENTED HACHINE

May be TRUE or FALSE. If your processor uses
byte addresses for memory references, this sliould
be FALSE.

KEYBOARD INPUT MASK

Characters that are recieved from the keyboard
will be logicsuy ANDed with this value. For the
typical ASCIl keyboai.d, set tliis value to 7F
hexadecimal (-which throws away the eighth bit).
For some keybords, which generate eight bit
characters, use FF hexadecimal. Default:
ASCII DEL.

KEY FOR BREAE

When this key is pressed while a program is
running, the program terminstes immediately with
a run-time error. Recommendation: a l<ey that is
dif ficult to hit accidentally. Default:
ASCII NUL.

0100101:05A 5-71

Utility Programs

KEY FOR FLUSH

This key may be pressed while the system is
sending output to the consolt:. The first time it
is pressed, output is no lorger displayed and will
be ignored ("flushed") until FLUSH is pressed
again. This csn be done any number of times;
FLUSH functions as s toggle. Note thst
processing continues while the output is ignored,
so using FLUSH causes output to be lost.
Default: ASCII ACK.

KEY POR STOP

This key may be pressed while the system is
writing to CONSOLE:. Like FLUSH, it is a
toggle. Pressing it once causes output and
processing to stop; pressing it again csuses
output and processing to resume; and so on. No
output is lost; STOP is useful for slowing down a
program so the output can be read while it is
being sent to the terminsl. Default: ASCII DC3.

KEY T0 AI,PI]A LOCK

When sent to the screen, this chQ['acter locks the
keyboard in uppercase (alpha mode). It is usually
a key on the keyboard as well. Default: ASCII
DC2.

5-72 0100101:05A

Utility Programs

KEY TO DELETE CHARACTER

This deletes the character where the cursor is
and moves the cursor one charscter to the left.
Defsult: ASCII BS.

KEY TO DELETE LINE

'mis key deletes the line that the cursoi. is
currently on. Default: ASCII DEL.

KEY TO END FILE

This key sets the intrinsic Boolean function EOF
to TRUE when pressed while peading from the
system input files (either KEYB0ARD or INPUT,
whicli come fi`om device CONSOLE:). Default:
ASCII ETX.

0100101:05A 5-73

Utility Programs

These keys are recognized by the Screen-Oriented
Editor and are used when editing a document to
move the cursor about the screen. If your
keyboard has a vector pad, you should use those
keys for these functions. If you have no vector
pad, you might select four lteys in the same
pattern (for example, '.', 'K', ';', and '0', in that
order) and use them as your vector keys,
pref ixing them or using the corresponding ASCII
control codes.

LEAD IN FROM KEYBOARD

On some termimls, pressing certsin keys
generates a twoiharacter sequence. TT`e first
character in these cases must alwsys be a prefix
and must be the same for all such sequences.
This data item specifies that prefix. Note that
this charactei. is only accepted as a lead in for
characters where you have set
PREFIXED[<item name>] to TRUE. (See MOVE
CURSOR HOME for an example of this.)

5-74 010010l:05A

Utility Programs

LEAD IN TO SCREEN

Some terminals require s twoiharacter sequence
to activate certain functions. If the first
chsracter in all these sequences is tlie same, this
dsta item can specify this prefix. This item is
similsr to the one above. The prefix is
generated only as a lead in for charactei's where
you have set PREFIXED[<item name>] to TRUE.
An example of this is in MOVE CURSOR HOME.

MAX NUMBER OF SUBSIDIARY YOLS

This field indicstes the msximum number of
subsidiary volumes that may be mounted at once.
Because the p-System Unit Tsble expands a few
bytes with esch additional subsidiary volume
entry, set this number to tlie smallest convenient
value. (Also see FIRST SUBSIDIARY VOL
NUMBER.)

The highest subsidiary volume will be ''First
subsidiary vol number" + ''Max number of
subsidiary vols" -1. This expression must be less
than or equal to 127, which is the higliest device
number allowed for system units.

Ol oo101s05A 5-75

Utility Programs

MAX NUMBER OF USBR SBRIAL VOLS

This entry is the total number of useriefined
serisl volumes desired. The first device number
assigned to a useriefined serial volume is ''First
subsidiary vol number" + ''Max number of
subsidiai`y vols."

For example, if ''First subsidiary vol number" is
12 (#12:) and ''Msx number of subsidiary vols" is
4, then the first user-defined serial volume #16:.
If this entry, ''Max number of user serial vols", is
2, then tlie user-defined serial volumes are #16:
and #17:.

If ''Max number of subsidiary vols" is 0, the'n tlie
f irst user-defined serial volume is equal to ''First
subsidiary vol number''. In this case, "Max
number of user serial vols" + ''First subsidiary vol
number'' -1 yields the highest-numbered
user-defined serisl volume.

NOTE: The largest value allowed for ''Max
number of user serial vols'' is 16. The
highest-numbered user-defined serial volume must
be less thsn or equd to 127.

5-76 010010l:05A

Utility Progrsms

NOTE: User-def ined serial volumes diffei. from
useri]efined devices (described under ''The
Extended SBIOS'' in the Ada table S
Installation Manual). Useriefined serial volumes
are part of the system devices. These devices
sre allocsted device numbers 0 through 127.
Device numbers 128 through 255 are allocated for
true user-defined devices. User-defined devices
can only be accessed using unit 1/0, whereas the
standard p-System f ile 1/0 capabilities csn be
used with system devices such as user-defined
serial volumes.

MOVE CURSOR HOME

When sent to the termiml, this key moves the
cursor to the upper left of the screen (position
(0,0)). If your terminal doesn't have a character
that does this, this data item must be set to
CARRIAGE RETURN; then, you won't be able to
use the Screen-Oriented Editor.

MOVE CURSOR RIGHT

When sent to tlie terminal, t..is moves the cursor
nondestructively one space to the right. If your
terminal doesn't have this function, you won't be
able to use the Screen-Oriented Editor.

0100101s05A 5-77

Utility Programs

MOVE CURSOR UP

When sent to the terminal, this moves the cursor
up one line. If your terminsl doesn't have this
function, you won't be able to use the
Screen-Oriented Editor.

NONPRINTING CHARACTER

This character is displayed on the screen when a
nonprinting cliaracter is entered or sent to the
terminal while using the Screen-Oriented Editor.

PREFIXED[<item name>]

If you set this to TRUE, the system recognizes
that a twoi:haracter sequence must be generated
by a key or sent to the screen for <item name>.
See the explanations for LEAD IN FROM
KEYB0ARD and LEAD IN T0 SCREEN. Note
that one of these items is
PREFIX[DELETE CHARACTER]. This refers to
backspsce; you can tliink of it as
PREFIX[BACKSPACE].

PRINTABLE CHARACTERS

This entry is used to determine which character
codes will be echoed to the coTisole. Any code,
from 0 to 255, may be defined as an eclmable
code,

5-78 0100101:05A

Utility Programs

SETUP requires input in the form of a list of
decimsl values separated by commas or double
periods. The vslues separated by commas
correspond to the ASCIl characters that win be
eclioed to tlie console. Tlie double periods
indicate thst Qll values between the two
indicsted numbers are included; for example, 32
through 126 (32..126) includes the values 32, 126,
and all values between them. The defsult is:

13, 32..126

(Carrisge return is 13, and 32 through 126 are
the standard printable characters). The value 13
must slways be pi`esent.

SCREEN HEIGHT

Starting from 1, this is the number of lines in
your display screen. If you are using s hard
copy termind, set this to 0.

SCREEN WIDTH

Starting from 1, this is the number of characters
in one line on your display.

0100101=05A 5-79

Utility Progi.ams

SEGMENT ALIGNMENT

For esse of implementation, some systems require
a code segment to be aligned to a certain
address. For example, on 8086 based systems
each code segment's starting address must be an
integral multiple of 16 (that is, 0, 16, 32, and so
on). Therefore, the segment alignment is 16.
Most systems require no segment slignment and a
value of 0 or 1 indicates this.

The processor segment alignments are as follows:

Non-extended Extended
Memory Memory

Z80
8080
8086
9900
6502
6809
68000
HP-87

pDP-11tm

N/A
N/A
16
0
N/A
N/A
0
0

64

STUDENT

On all systems, this should be FALSE.

5-80 0100101:05A

Utility ProgrQms

YERHCAL HOVE DEI.AY

This may be a decimal integer from 0 to 10.
Many terminals require a delsy after vertical
cursor movements. This delay allows the
movement to be completed before another
chdracter is sent. This data item specifies the
number of nulls the system sends to the terminal
after every CARRIAGE RETURN, ERASE TO
END OF LINE, ERASE TO END OF SCREEN,
CLEAR SCREEN, 8nd MOVE CURSOR UP.

0100101:05A 5-81

Utility Programs

SuDmary of Data ltems

All the fields which SETUP modifies are:

BACKSPACE
CODE P00L BASE[FIRST WORD]
CODE POOL BASE[SECOND WORD]
CODE P00L SIZE
EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
EDITOR EXCHANGE-DELETE KEY
EDITOR EXCHANGE-INSERT KEY
ERASE LINE
ERASE SCREEN
ERASE TO END 0F LINE
ERASE TO END OF SCREEN
FIRST SUBSIDIARY VOL NUMBER
HAS 8510A
HAS BYTE FLIPPED MACHINE
HAS CLOCK
HAS EXTENDED MEMORY
HAS LOWER CASE
HAS RANDOM CURSOR ADDRESSING
HAS SLOW TERMINAL
HAS SPO0LING
HAS W-ORD ORIENTED MACHINE
KEYB0ARD INPUT MASK
KEY FOR BREAK
KEY FOR FLUSH
KEY FOR STOP
KEY TO ALPHA LOCK
KEY TO DELETE CHARACTER
KEY T0 DELETE LINE
KEY TO END FILE
KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP

5-82 0100101:05A

Utility Programs

LEAD IN FROM KEYBOARD
LEAD IN TO SCREEN
MAX NUMBER OF SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS
MOVE CURSOR HOME
MOVE CURSOR RIGHT
MOVE CURSOR UP
NONPRINTING CHARACTER
PREFIXED[DELETE CHARACTER]
PREFIXED[EDITOR ACCEPT KEY]
PREFIXED[EDITOR ESCAPE KEY]
PREFIXED[EDITOR EXCHANGE-DELETE KEY]
PREFIXED[EDITOR EXCHANGE-INSERT KEY]
PREFIXED[ERASE LINE]
PREFIXED[ERASE SCREEN]
PREFIXED[ERASE TO END 0F LINE]
PREFIXED[ERASE TO END OF SCREEN]
PREFIXED[KEY TO DELETE CHARACTER]
PREFIXED[KEY TO DELETE LINE]
PREFIXED[KEY TO MOVE CURSOR DOWN]
PREFIXED[KEY TO MOVE CURSOR LEFT]
PREFIXED[KEY TO MOVE CURSOR RIGHT]
PREFIXED[KEY TO MOVE CURSOR UP]
PREFIXED[MOVE CURSOR HOME]
PREFIXED[MOVE CURSOR RIGHT]
PREFIXED[MOVE CURSOR I;P]
PREFIXED[NONPRINTING CHARACTER]
PRINTABLE CHARACTERS
SCREEN HEIGHT
SCREEN WIDTH
SEGMENT ALIGNMENT
STUDENT
VERHCAL MOVE DELAY

0100101:05A 5-83

Utility Programs

Sample SETUP Session

The fouowing is a sample of part of a SETUP
session. The data is being changed from the
system defaults to the specifications for a Soroc
terminal. All underlined text like this you enter,
and an text enclosed in curly i;rackets {lilü this}
ii5 commentary. Angle brackets <these> are used
to enclose the names of nonprinting characters
{like <return>}. All else is SETUP's output to
the tei.minsl.

{To begin, you must execute SETUP}

XS ETtJP < r et ii r n >

SE:TUP: C(HANGE T(EACH H(ELP Q(UIT IDl}

{H(ELP tells you about the other activities, and T(EACH.
desc[ibes the use of SETUP. Now is the most profitable
time to use these activities.
Suppose you have [ead H(ELP and T(EACH, and decide to
change data items by qoing th[ough the menu. You must
p[ess 'C' for C(l]ANGE.}

£

{Note: these single-characte[activities don't echo.)

CHANGE: S(INGLE) P(ROMPTED) R(ADIX)

H(E:LP) Q(UIT)

(H(El.P) describes the activities on this particular line,
R(ADIX) allo.s you to change the base of the numbers
you er`ter, and Q(UIT) returns you to the SETUP: menu.
What you .ant to do now is go th[ou6h the p[ompted menu.}

£

flE:LD NAHE = BACKSPACE:

OCTAL DECIMAl, HEXAI)ECIMAL ASCII CONTROI.
10 8 8 BS ^»

WANT TO CHANGE THIS VALUE:? (Y,N,l)
<return>
WANT TO CHANGE Tl+IS VALUE? (Y,N,I)

{<retu[n> o[<space> vill cause this menu to be repeated.
' 1 ' causes an escape to the CHANCE: menu.
Since conc[ol-H (-1]) is indeed the Soroc's backspace,
you .ant to go on.}

5-84 0100101:05A

Utility Programs

M

f`]ELD NAME = E:DITC)R ACCEPT I{EY

OCTAL DEC`IMAL IIE:XADECIMAL ASCI I CONTROL

0 0 0 NUL -e
h.ANT TO CllANGE THIS VALUE.? (Y,N,!)

X

NEh. vALUE: shon£±

(When <home,` or any other nonprinting key
is pressed, '?' is displayed.}

OCTAL DEC]MAL HE:XADECIMAL ASC] I CONTROL

3 3 3 E;TX ^C
WANT TO CliANGE, THIS VALll£? (Y,N,!)

M

f]E;LD NAME = EDITOR ESCAI'E: KEY

OCTAL D£CIMAL HEXADE:C]MAL ASCII CONTROL

0 0 0 Nl)L ^e
WANT TO CHANGE THIS VALU£` (Y,N, !)

X

NEW VALUE: <retii[n>

{Any unexpected input here causes the
relevant section of T(EACH to be outpiit,
fo]lo.ed by this:)

C(ONTINUE)

{All characte[s are ignored exc`ept 'C', and
then the menu is repeated.}

£

NEW' VALUE: <iubout> {Again, a '?' is echoed.)

OCTAL DECIMAL llEXADE:CIMAL ASCIl

177 127 7F DEI,
WANT TO CHANGE TH]S VALUE? (Y,N,l)

{(Note that there is r`o co[[esponding control key.)
DEL is not the key you meant, so you must
change it again.}

X

NEW VAl,UE: <esc> {? is echoed.}
OCTAL DECIMAI. HE,XADEC`IMAL ASCII CONTROL

33 27 18 ESC ^[
WANT TO CHANGE THIS VALUE? (Y,N,l)

M

0100101:05A 5-85

Utility Pi.ograms

{This is what it should be.}

{The mei`u continues in this way for the [est of
the data items. Suppose you have gone ahead and
answered all of the questions acco[ding to the
Soroc specif ications; af ter the last data item,
you again get the menu:)

CHANGE: S(INCLE:) P(ROMPTED) R(ADIX)

H(ELP) Q(UIT)

{You realize that you lef t the pref ix for
ERASE LINE at FALSE, when it should be
TRUE. You want to change]ust this one
data item.)

s {ro[s(INGLE))

N"E OF FIELD: PREFIXE:I) lERASEI
DIDN'T FINl) PREflxED IERASE] {Oops)
NAME OE. FIE;LD: PREFIXEI) lERASE LINEI

FIELD NAME: = PREFIXE:D IE:RASE LINEI

CURRENT VAI,UE IS FALSE:
WANT TO CHANGE TllIS VALUE? (Y,N,l)

X

NEW VALl}E: TRUE {T uould also work.}
CURRENT VALUE IS TRUE

WANT TO CHANGE Tl]I§ VALIJE? (Y,N,l)

Ü

CHANGE: S(INGI,B) P(ROMPTEI)) R(ADIX)
l](El'P) Q(UIT)

0
SETUP: C(I]ANGE T(EACH H(ELP Q(ÜIT [D2}

0 (You're through changing data now.}

QUIT: D(ISX) OF` M(EMORY) UPDAT£,
R(ETURN) l](E:I.P) E(XIT)

{You vant to do a disk update to c[eate
NEW.MISCINfo on your disk for future use.)

Q

QUIT: D(ISK) OR M(EMORY) UPDATE,
R(ETURN) H(BLP) E(XIT)

Ä

{And now you'[e done. The Comft`arid menu
vill appear.}

5-86 0100101:05A

Utility PI.ogrsms

Sample Terminal Setups

Here is a list of SYSTEM.MISCINF0 dsts items
followed by some sample values for four popular
terminsls. Some items in the SETUP menu
haven't been included; these are data items that
refer to you processor configurstion, not your
terminalo

These examples represent what we consider
reasonable layouts for a few different keyboards,
but we don't guarantee that they work for your
particular hardware or match your individual
taste.

0100101:05A 5-87

Utility Programs

XEy T`O XV CURS tolnl Ct[i-.
XEY T0 NV CÜRS L,E:PT ct[1-ll
XEY TO XV CÜR§ RCLIT ct[l-L
kEY " NV CURS UP ct(l-[
L.E^D IN PROX X£YE)D NUL
Le^D lt. TO SCRE:E:tl Nüt,
•OVE: CURSOR HCM£ ct.l-^
rK)vE cÜRsoR RlctlT ct[l-l.
llovE: CUR§OR ÜP ctrl-k
NONPRINTZNC ctl^R '? '
PREF. (DE:l,ET£ CH^R) P^Lsg
PREF` (ED ^CC£PT XEY) P^ISB
PRBF` [ED ESC^PE; kE:yi P^Ise
pREp (E:msE L,INg) p^lsE
PREP (E:f`^Sg SCRE:EN) F'^LSE
PRBF` (E:R^Sg to eol.Ni P^ISB
PREr [E:RSE " EOSCNi PALISE
PR£F` ([EY D£l. C»AR) P^ls£
PREF (kEY DEl. I,Il.EI F^lsE
PREP ([E;Y XV CZ`S DN) P^lsE
PRgp (XEy rw CRS LTi F'^LSE
PREF` (XE;Y XV CRS RT) F^ls€
PREP (k€Y AV CRS Üf') PALLSE
PREr i»oVE CRS IIO»E:) p^isE:
PREP (ÄOVE Cuf`S f`T) PALsg
PR£P (XOVE CURS UP) P^tsE
PREP (NONPRlm CHAR) F'AlsE
SCREBN HgICIIT 2.
SCR££N WIDT» 80
STUO ENT r^LS E:
VERTIC^L NOVE: DEL^Y S

5-88 0100101:05A

Utility Programs

Terminals: DEC
VT-52

Data ltems:
BACKSPACE bac.kspace
EDITOR ACCE:PT KEY ctrl-C
EDITOR ESCAPE KEy esc
ERASE LINE ctrl-e
ERASE SCREEN ctrl-e
ERASE TO END OP l,INE K
ERASE TO ENI) OF SCRN J
I]AS l,OWER CASE TRUE
HAS RAND CURS ADDR TRUE
I]AS SLOW TERr]INAL FALSE
KE¥ FOR BREAK ctrl-e
XEY FOR FLUSH ctrl-r
KEY FOR STOP ctrl-S
XEY TO ALPHA LOCK ctrl-R
XEY TO DELETE CHAR ctrl-H
KEY TO DELETE LINE del
REY TO END Fll,E ctrl-C
KEY TO HV CURS DOWN 8
KE:Y TO MV CURS LEFT D

KE:Y T0 MV CURS RGHT C
K£Y TO NV CURS UP A
LEAD IN FROM KEYBD esc
l,EAD IN TO SCR£EN esc
HOVE CURSOF{ »OME H

MOVE CURSOR RIGl]T C
MOVE CURSOR UP A
NONPRINTING CliAR '? '
PREF IDEl,ETE CHAR] FALSE:
PREr [E:D ACCEPT KEy] FALS£
PREf lED E:SCAPE KE:Y) TRUE
PRE:F IERASE LINE] E`ALSE
PREP (ERASE: SCREENI F.ALSE
PRE:F iE:RASE ro EOLN] TRUE
PREr iERSE; TO EOSCN] TRUE
PRE:F IXEY DEL CHAR] fALSE
PREF IKEY l)EL LIN£] FALSE
PREf lREY HV CRS DN] TRUE
PREF [XE:Y MV CRS LT] TRUE

PR£f lI(E:Y MV CRS RT] TRUE

PREF IKEY MV CRS UP] TRUE

PREf [MOV£ CRS lioMEI TRUE
PREf lMOVE CURS RT} TRUE
PRE:f IMOVE CURS UPI TRUE

PREf lNONPRINT CHAR} fALS£
SCRE:£N l]EIGHT 24
SCREEN WIDTI] 80
STUDENT FALSE
VE;RT]CAL MOV£ DE:LAY 0

0100101:05A 5-89

DATA-
NEDIA

1-1] backspace
-C ctrl-C

esc
ctrl-e
ctrl-L
ctrl-]
ctrl-K
TRUE
TF\UE

£ FALSE:
ctrl-e

-F ctrl-F`
-S ctrl-S
-R ctr l-Ft
-H backspace

del
-C ctrl-C

d-arrow
1-arro,
r-arrov
u-arrov
ctrl-e
ctrl-e
ctrl-Y
ctrl-\
ct[l-_
'?'

F`ALSE
FAI.SE
FALSE
F`ALSE:

PALSE
FALSE
F`ALS£
PAl,SE:
FALSE
FALSE
FALSE
F`ALSE
FALSE
PALSE
FALSE
FALSE
fAl,SE
24
80
F`A1.SE

0

Utility Programs

DISKSIZE

"e DISKSIZE utnity enables you to alter the
storage cspacity of a disk without having to change
the files on it. For example, you could change a
disk's size from 640 blocks to 320 blocks.

When you use DISKSIZE to make s disk smaller, you
shuld be sure thst there is enough unused space
after the last file to absorb the decresse in
storage capacity. If tliere isn't, the resulting
directory win ber intermlly inconsistant since disk
spsce is being used which isn't supposed to be
availsble. (Files aren't removed by DISKSIZE.) If
you sttempt to use DISKSIZE to make a disk .larger
than its maximum storage capaeity, DISKSIZE will
inform you that this can't be done.

When you X(ecute DISKSIZE, these prompts appear:

Change di[ectory size on what uriit (.,5,9..22) ?
Current size is xxx blocks
What is new directory size in 512 byte blocks ?

In response to the first prompt, you should enter
the device number of the disk to be altered.
(Don't include the # sign or the colon in the
device number.)

TT[e second line indic&tes the size of the disk
according to the current directory. The "xxx" is
actually & number such as 320.

5-90 0100101:05A

Utility Pi.ograms

The last prompt asks you to enter the new size for
the disk. You should enter the desiped number
fouowed by <return>. If the number you enter is
lai.ger than tlie maximum capacity (or smsner than
the minimum capacity) of the disk, you are
prompted:

No such block
What is new directory gize in 512 byte blocks ?

'mis means that you entered an invalid number and
should try again.

0100101:05A 5-91

Utility Progpams

COPYDUPDIR

COPYDLTPDIR copies the duplicate directory of a
disk into the primary directory locstion. In certain
situations, a duplicate directory may help rescue
directory information thst is garbled or lost.

'Itie Z(ero command of the filer can create a
duplicste dii.ectory, as can the MARKDUPDIR
utility. Once s duplicate directory has been
created, the f iler maintains it along with the
primary directory.

To use this utility, X(ecute 'COPYDUPDIR'. The
system then displays a prompt asking for the drive
in whicli the copy is to take place. If the disk
doesn't currently contain a duplicste directory,
COPYDUPDIR displays Q prompt stating that. If
the duplicate directory is found, then
COPYDUPDIR displays a prompt asking if you wsnt
to destroy the directory in blocks 2 through 5.
Press 'Y' to execute the copy; any other character
aborts the program.

5-92 010010l:05A

Utility Programs

MARKDUPDIR

MARKDUPDIR creates a duplicate directory on a
disk that doesn't currently contain one.

Be sure that blocks 6 through 9 are free for use.
If they aren't, use T(ransfer or a backward K(runch
to free them. To determine if these blocks are
available, do an extended listing in the filer and
check to see where the first fne starts. If the
first file, or unused area starts at block 6, then
the disk doesn't have s duplcate directory.
However, if the first file or uJ'used area starts at
block 10, then the disk already has a duplicate
dil.ectory.

HARKDUPIR Example

SYSTE:M.PASCAL 106 l-Jan-83 6 Codef ile

OR

<unused> 4 6
SYSTEM.PASCAL 106 l-Jan-83 10 Codef ile

Botli of the preceding cases indicate disks that
have no duplicate directory. The fonowing listing
is a directory of a properly marked disk:

S¥STEM.PASCAL 106 l-Jan-83 10 Codef ile

0100101:05A 5-93

Utility Progi`ams

To creste a duplicate directory, X(ecute
'MARKDUPDIR'. The system will display a prompt
asking which drive contains the disk to be marked
(#4 or #5). MARKDUPDIR checks to see if blocks
6 through 9 are free. If they aren't, the system
displsys a prompt asking if you are sui.e they are
free. Press 'Y' to continue; any other charscter
will abort the program. Be sure thst the space is
free before marking it as a duplicate directory;
otherwise, you'll lose file informstion.

5-94 0100101305A

Utility Programs

RECOVER

The RECOVER utility attempts to recreate the
directory of a disk whose directory lias accidentally
been destroyed.

When you X(ecute 'RECOVER', it prompts you for
the drive number of the disk you wish to recover:

Recover [version]
USER'S DISK IN DRIV£ I (0 exits):

You should enter the number, such as '5', without
the pound sign or colon, followed by <return>.
Next, you are prompted for the new name to be
given to the recovered volume:

USER'S VOLUHE ID:

You should enter a correct volume name. Finally,
RECOVER prompts:

How many blocks on disk?

Here you should indicate tlie totd number of blocks
on the volume being recovered.

0100101:05A 5-95

Utility Progi.ams

RECOVER resds esch entry in the disk's directory
and checks it for vslidity. Entries with errors are
removed. Vslid entries ai.e saved, and RECOVER
displsys: 'ENTRY.NAME found' (or something
simi,ar).

When all the directory entries have been checked,
saved, or discarded, RECOVER displays the
fouowing prompt:

Are there still IMPORTANT files missing (Y/N)?

If you press 'N', RECOVER displays the fouowing
prompt:

GO AHEAD AND UPI)ATE: DIRECTORY (Y/N)?

If you press 'N', RECOVER finishes executing
without doing anything.

If you press 'Y', RECOVER saves the reconstructed
directory and display the fouowing prompt:

WRITE OR

Then RECOVER terminates.

5-96 0100101:05A

Utility Programs

If you press 'Y' in response to the 'Are there still
IMPORTANT files missing?' prompt, RECOVER
searches those areas of the disk stiu not accounted
for by the (partiauy) reconstructed directory. Text
files and code files are detected, and appropriate
directory entries are crested for them. If
RECOVER can't determine the originsl name of a
file it has found, it creates a directory entry for
DUMMY##.TEXT or DUMMY##.CODE (where the
are two unique digits). If a code file has a
PROGRAM name, it is given that name. If this
would creste s duplicate entry in the directory,
digits are used; for example, RECOVER first
restores SEARCH.COT)E and, then,
SEARCH00.CODE.

RECOVER can`t detect data files since their
format isn`t system-defined. To recover data files,
you must use the PATCH utility, described in the
UCSD p-S stem Pro ram Development User Guide.

If RECOVER restores a text file with an odd
number of blocks, this probably means that the end
of the text file was lost. Use the editor to make
sure this is the case.

You should use the linker to relink recovered code
files (if linking was origimlly necessary).

When RECOVER has finished its pass over the
entire disk, it displays the following prompt:

G0 AHE:AD AND UPDATE DIRECTORY (Y/N)?

0100101:05A 5-97

APPENDICES

APPENDIX A
EXECUHON ERRORS

0 Fatal system e.rror
1 lnvalid index, value out of range
2 No segment, bad code file
3 Procedure not present at exit time
4 Stack overflow
5 Integer overflow
6 Divide by zero
7 Invalid memory reference <bus timed out>
8 User break
9 Fatal system 1/0 error

10 User 1/0 eri.or
11 Unimplemented instruction
12 Floating point math error
13 String too long
14 Halt, Break Point
15 Bad Block
16 Break point
17 Incompatible Real Number Size
18 Set Too Large
19 Segment Too Large

All i.un-time errors csuse the system to I(nitialize
itself; FATAL errors cause the system to
rebootstrap. Some FATAL errors leave the system
in an irreparable state, in which csse the user must
rebootstrap.

A-2 010010l:OAA

APPENDIX 8
1/0 RESUL"

0 Noerror
1 Bad Block, Parity error (CRC)
2 Bad Device Number
3 megal 1/0 request
4 DataTcom timeout
5 Volume is no longer orLline
6 File is no longer in directory
7 Badfne name
s No room, insufficient space on volume
9 No such volume on-line

10 No such file on volume
11 Duplicate directory entry
12 Not closed: attempt to open an open fne
13 Not open: attempt to access a closed file
14 Bad foi.mst: error in resding red or integer
15 Ring buffer overflow
16 Volume is write-protected
17 Illegal blck3k number
18 megal buffer
19 Bad text file size

Oloo101:OAA A-3

LO

) and 11...127

128...255

A-4 010010l=OAA

APPENDIX C
DEVICE NUMBERS

Volume
Name

CONSOLE:
SYSTERM:
<System disk '*'>
<other disk>
PRINTER:
REMIN:
REMOUNT:
HDUPRTA <hard disk>
<additional disks,
subsidiary volumes,
or user-defined
serial devices>
<user-defined devices>

APPENDIX D
ASCII TABLE

A-50100101:OAA

APPENDIX E
CONFIGURATION NOTES

This sppendix briefly covers several topics rel&ted
to p-System configuration and possible problems
that you might encounter.

FLOAHNG POINT PACKAGES

The p-System msy be configured to run with
two-word real numbers (32 bit precision), four-word
real numbei`s (64 bit precision), or no flosting point
aritlimetic at all. Programs whicli use two-word
precision can perform floating point opei.ations with
6 to 7 digits of accuracy and a base 10 exponent
with an absolute value as large as 38
(approximately). Programs using four-word precision
can have up to 15 or 16 digits of precision and a
base 10 exponent with an absolute value as large
as 308 (approximately). These values vary
somewhat among processors.

The memory available to p-System programs
decreases as you go from no reals, to twcrword
reals, to four-word reals. This results in tradeoffs
between floating point pi.ecision and memory spsce
svsilability that you should take into considei.ation.
Execution speed may also be a factor since code
may have to be swspped to and fi`om disk more
often when there is less msin memory space
available.

A-6 0100101:OAA

Appendix E

Application programs which use floating point
arithmetic require a p-System configued with the
same real size that they use. If you attempt to
run a pi'ogram which uses a different real size from
the p-System you are using, you will receive a red
size mismatch error (execution error 17). If you
attempt to run a program which uses reals on a
pr-System configued for no reals, you will receive
an unimplemented instruction error (execution error
11). (Programs that don't use real numbers will run
regardless of the floating point precision of the
p-System.)

When a Pascal program is compiled, the compiler
creates a code file which has the real size of the
PME being used. If you want to create a code file
with a specific real size (which doesn't necessarily
correspond to the underlying PME at compilation
time), you can use the SR compiler option
(described in
Develo

the UCSD
ment User Guide

stem Pro
For FORTRAN and BASIC,

there is a two-word `and four-word version of the
compiler. You should choose the compiler which
produces the desired real number size.

'Ihe rest of .this section outlines how to create a
system with the real size that you want. This
information may not apply to you, however, since
some pßystem suppliers ppovide separate boot disks
which are already configured for the different real
sizeso

0100101=OAA A-7

Appendix E

The operating system (SYSTEM.PASCAL) and the
p-machine emulstor (usually caued SYSTEM.INTERP)
both must be configured for a particular real size.
They should be configued consistently with each
otller,

In order to ci.eate a new SYSTEM.PASCAL with
real numtErs, you must use the LIBRARY utility
(described in Chapter 5). With this utility, you
should place the appropriste REALOPS unit into
the new SYSTEM.PASCAL. Whenever you use the
LIBRARY utility to create a SYSTEM.PASCAL, you
must be sure that the segments KERNEL snd
USERPROG i.emain in slots 0 and 15, respectively.
It is a good idea to first move REALOPS over to a
slot greater tlian 15. After thst, move all of
SYSTEM.PASCAL over to the new file.

Here is s step-byitep process that you may follow
if you are unfamiliar with the Library utility:

1. Make sure that you have a disk with enough
free spsce (approximately 120 cont.iguous blocks)
to contain the new SYSTEM.PASCAL. You
sliould be sure that a SYSTEM.PASCAL doesn't
already exist on that disk. For this discussion,
thst disk will be c81led ''NEW PAS:''.

A-8 0100101:OAA

Appendix E

2. Locate the appropriate REALOPS code file (for
twcrword or four-word reals). Place this code
fne on NEW PAS: using the filer's T(ransfer
facility. FOF this discussion, that ffle wiu be
referred to as ''REALOPS.CODE" even though it
actually has a slightly different name (depending
upon your processor snd resl size).

3. Locate the disk which contains the LIBRARY
utility and place it in drive #5.

4. From the Commsnd menu, X(ecute #5:LIBRARY.

5. After LIBRARY's first prompt sppears on the
screen, remove the disk from #5 and place
NEW_PAS: in #5. Be sure thst the system disk
is in #4.

6. Respond to LIBRARY's prompts like this:

Output f i]e? N£W_PAS:SYSTEM.PASCAL <ret>
Inpiit file? NEW_PAS:REALOPS.CODE <ret>
TYPE: IT,

TYP£: '0 <space> 21 <spac`e>
TYPE: ,N,

Input file? +SYSTLM.PASCAL <ret>
TYPE: '£'
TYPE: ,Q'
TYPE: <ret>

7. NEW PAS:SYSTEM.PASCAL is now configured for
the äppropriate reai size. Later, you shouid
T(ransfer this fne to a bootable disk.

010010l=OAA A-9

Appendix E

After you have crested the new SYSTEM.PASCAL,
the next step is to locate tlie PME which has the
real size tliat you want. You sre pi.ovided with
two-word and four-woi.d PMEs in addition to a PME
which doesn't suppoi.t red numbers. You should
simply locste the appi.opriate PME code file for
now. Later you should use T(ransfer to move that
code file to the boot disk giving it tlie name
SYSTEM.INTERP. (On some systems, the PME is
given a different name, such as SYSTEM.PDP-11,
SYSTEM.IBM, and so forth).

In order to create a bootable disk which contains
the new SYSTEM.PASCAL snd SYSTEM.INTERP, you
need to follow a process which is mschineipecific.
Hei.e is a general outline of the necessary steps:

1. Foi.mat a new diskette.

This involves executing the DISKFORMAT utility
as described in the manual UCSD p-System Guide
to the Use on M20.

2. Initialize the. p-System directory.

You can do this using the filer's Z(ero command
(described in Chapter 2). Some disk formatter
programs do this automaticauy, however.

A-10 0100101:OAA

Appendix E

3. Use T(rarßfer to move the necesssry system files
onto the new boot disk.

These files include SYSTEM.PASCAL,
SYSTEM.INTERP, and SYSTEM.MISCINFO. (Some
systems require sdditional f iles such as
SYSTEM.BI0S, SYSTEM.SBIOS, or SYSTEM.BO0T.
If this is necessai.y on you computer, your
machineipecific documentation should explsin
it.) Usually, SYSTEM.LIBRARY is kept on the
boot disk as well.

4. Place the bootstrap code on the new diskette.

The bootstrap code (which is only requii.ed on
bootable disks) resides in an area of the disk
which doesn't appear in the p-System directory.
In order to place this code on a disk, you may
need to use s special utility program such as
B00TER. Some disk formatter programs
automaticauy place the bootstrsp on the newly
formatted diskette. A volume-to-volume
T(ransfer wnl copy the bootstrap code on many
computers. (If this is tlie case with your
computer, you can, if you wish, just T(rsnsfer
two blocks from a bootable disk to a new disk.
This will copy the bootstrap code without
disturbing the directory or any files that may
already reside on the new disk.) The process of
placing a bootstrap on a new disk should be
described in your machineipecific
documentation.

0100101:OAA A-11

Appendix E

THE DEBUGGER

The debugger is described in the UCSD p-S
ram Develo ment User Guide. It can be used as

an aid in debugging programs that you develop. In
order to use the debugger, you may have to use
the LIBRARY utility to place DEBUGGER.CODE
into SYSTEM.PASCAL. (See the "Floating Point
Packages" section, above, about using LIBRARY to
create a new SYSTEM.PASCAL.)

In order to use the symbolic debugging facility, you
may also have to place the symbolic debugging unit
(usually found in PDBG.SEED.CODE) into
SYSTEM.PASCAL using LIBRARY.

The reason that the debugger isn't necessarily
placed in SYSTEM.PASCAL is that it requires extra
disk space and not all p-System users need it.

You should be aware that if you select D(ebug and
there is no debugger in your system, the p-System
will halt. It is necesssry to reboot under these
circumstances.

A-12 Oloo10l:OAA

Appendix E

EXTENDED MEMORY

Extended memory is a feature that sllows the
p-System. to run in environments of up to 128K
bytes (or more) of memory. This is accomplished
by dividing the psystem run-time environment into
two parts, each of which may occupy as much as
64K bytes of memory. (On many computers, a RAM
disk can be used if you have more than 128K.)

The code pool is sn area of memory where most
code segments sre executed by the p-System. This
code includes the operating system, filer, editor,
8nd so on, as well as your programs. In
nonextended memory systems, the code pool shares
the ssme space with the rest of the p-System (for
example, the interpreter, RSP, BI0S, SBIOS, and
the p-System stsck and heap). The code pool
resides between the stack and heap on nonextended
memory systems.

On extended memory systems, the code pool is
placed in a separste area of memory altogether.
Thus, the code pool may occupy an entire 64K
portion of RAM, and the rest of the p-System may
occupy another entire 64K area.

A major advantage of the extended memory featue
is tlie additional memory space available for
executable code to use. This means that larger
programs can be compiled and executed.

0100101=OAA A-13

Appendix E

Also, tlie code segments on extended memoi`,y
systems may not need to be moved or swapped as
often as tliose on nonextended memory systems
thei.eby producing significant performance
improvements.

Becsuse there is more space for the p-System stsck
and r`eap to grow, the chances of a stsck overflow
sre reduced.

"e SYSTEM.MISCINF0 item ''HAS EXTENDED
MEMORY" must be set to true if you are using
extended memory, and false, otherwise. If HAS
EXTENDED MEMORY isn't set correctly, the
p-System won't boot.

A-14 0100101:OAA

Appendix E

BO0HNG PROBI,EHS

lf you are having problems bootstrapping the
p-System, there are several simple mistakes that
you may have made. Tt`is section briefly covers
them,

• You may have forgotten to plsce a bootstrap on
the disk. The bootstrap code doesn't appear in
the directory because it resides in an ares
outside of the main pßystem volume (usually in
the first two blocks of the first p-System track
on the diskette). A bootstrap is placed on the
diskette in a machineipecific manner. On some
machines the BOOTER utility is used. On
PDP-11 or LSI-11 machines, the ABOOTER
uti.lity is used. (B00TER and ABOOTER are
described in the Ada
Manual.)

table S stem lnstallation
Other implementations use s special

utility program to copy a bootstrap onto s new
diskette (often in conjunction with disk
formatting snd directory initialization).

• You may not have all the necessary system files
on the diskette. SYSTEM.PASCAL,
SYSTEM.INTERP, 8nd SYSTEM.MISCINF0 all

smuucsctesbsefu°]]ny.the(SA¥:::ns,£SksjfsjtE#]k°TEb£:tstmr:;
have another name on your particular system.)
Some systems require other files on the system
disk such as SYSTEM.BIOS, SYSTEM.SBIOS, or
SYSTEM.B00T.

0100101:OAA A-15

Appendix E

• Any of the following fields in SYSTEM.MISCINF0
msy have been set incorrectly:

CODE POOL BASE
CODE POOL SIZE
HAS EXTENDED MEMORY
HAS SP00LING
SEGMENT ALIGNMENT

lf any of these are incorrectly set, the system may
not boot. You should be sure that you keep a
backup copy of any system disk wliich does boot
successfuuy (since you need to boot the p-System
in order to alter SYSTEM.MISCINFO witli the
SETUP utility).

A-16 0100101:OAA

Appendix E

SCREEN DISPLAY PR0BLEMS

lf you screen doesn't display information correctly,
there are two likely problems:

• SYSTEM.MISCINFO is incorrectly configured for
your console. In the section on SETUP (in
Chapter 5) several sample terminal setups are
given. Any of the SYSTEM.MISCINF0 items
shown there may adversely affect the screen
display if they are set incorrectly for your
hardware. Note that the four
SYSTEM.MISCINFO items which begin with
''ERASE" may be especiauy troublesome if set
incorrectly. If these ''ERASE" items are set to
NUL (ASCII 0), then the p-System wiu function
correctly (but slower than if they are set to the
correct values for your hardware). However, if
both ERASE LINE and ERASE TO END OF LINE
are set to NUL, the display won't alwsys be
correct.

• You have an incorrect GOTOXY unit within
SYSTEM.PASCAL. GOTOXY moves the cursor
to s given ''X" and ''Y" coordinate on the
sci.een. Different terminsls perform this in
different wsys, so GOTOXY is
terminaliependent.

0100101 :OAA A-17

APPENDIX F
p-SYSTEM GLOSSARY

Adaptable System

Anchor

A variation of the p-System
that allows you to write the
low-level device interface
code wliich liandles the
peripherals on a specif ic
computer. Once this
installation pi.ocess is done,
the p-System can be used on
the new computer.

In the Sci.een-Oriented
Editor, the position of the
cursor when D(elete is
invoked. When the cursor is
moved away from this
position, text disappears.
When the cursor is moved
towai.d this position, text
reappears.

Application Program A computer program that
meets specific needs of s
personsl computer user.
Examples include s payi.oll
pi.ogram oi` an oil well
supervision progrsm.

Assembler

A-18

A program that translates
human-readable assembly
language into machine code.

0100101:OAA

Appendix F

Associate Time

Back File

Backup

Bad Block

Bad File

0100101:OAA

The time taken by the
Version IV opereting system
to find and stitch together
tlie units referenced by a
program. This stitching
together must occur before
the program can begin
execution.

A backup file for text files
that is identified by the
suffix .BACK; for example,
FILENAME.BACK.

1Tie operQtion of mQking Qn

;nxft.rrama:?opny,::uailTypo::an:
storage volume, in this
book). Also, the extra copy
that results from this
operation.

A 512-byte area on a
storage volume that is
somehow damaged. The
result is that information
can't be stored or retrieved
from there.

An immobile f ile used to
prevent the use of bad
blocks on a disk. A bad
file is identified by the
suffix .BAD; for example,
BAD.00120.BAD.

A-19

Appendix F

BASIC

BIOS

Bit

Block

Block-Structured
Device

BOotstrap

Boot Volume

A-20

A popular liigh-level
programming language tliat
is supported in the
p-System.

Basic lnput/Output
Subsystem; that portion of a
p-machine emul8tor that is
specific to a particular
brand of computer.

The minimum unit of storage
on most computers. A bit
is either "on" or ''off.''

The 512-byte unit of storage
and retrieval that is used
with p-System storage
volumes.

Referred to in this book as
"Storage Volume." Earlier

p-System documentation, and
many p-System prompts and
error messsges still use
"blockstructured device;" or
''blocked device," when
referring to storage volumes.

The action of starting (or'
that piece of code which
starts) the p-System running.
You must bootstrap the
p-System before you can do
anything with it.

See "System Disk.t'

0100101:OAA

Appendix F

Bug

Byte

Cl,aining

Client

Code File

Code Segment

Communication
Volume

0100101=OAA

A defect in a program that
causes it not to opei.ate as
intended.

A unit of computer storage.
Usually has the capacity to
store s bits of information,
or a number in the range 0
thi`ough 255.

See "Program Chaining."

A program or unit which
uses another unit.

A file that contains the
compiled or assembled
version of a program or
program segment. Ususlly
identified by the suffix
.CODE; for example,
FILENAME.CODE.

The smallest component of a
p-System progi`am that can
be moved into (or removed
fi`om) main memory during-
the running of the program.

A p-System 1/0 device that
doesn't store information on
a long-term basis; for
example, the console or the
printer.

A-21

Appendix F

Compilstion Unit

Compiled Listing

Compiler

Copy Buffer

Cursor

A-22

A unit (as i.epresented in
any of the thi.ee p-System
lan8usges) or a program.
Tlie smallest module thst a
language allows to be
compiled sepsrstely.

The source lines of a
program, annotated by the
compiler with details of the
results of compilation,
including sizes of
statements, sizes of data
areas, and other information.

A program that translates
the human-readable source
text of a program into
p-m a c h i n e- x e c u t a b 1 e
piode.

In the editor, a storage area
in which text can be
temporarily stored after it
hss been deleted from the
workipace or whne it is
being copied from one place
to anotlier in the
workipace.

An indicator that highlights
a particular point on a
display screen. In many
situations, characters typed
at the keybosrd appear on
the screen at the location
of the cursor.

0100101:OAA

Appendix F

Data Entry Prompt See "Prompt."

Data File

Declare

Decode

Default

0100101:OAA

A file that contains
arbitrary Liser dat8. No
particular internal structure
is assumed. No special file
name suffix is required, but
.DATA is often used.

To establish the name and
type of an identifier used in
a computer program. Some
languages (Psscal, for
instsnce) require that sll
identifiers be declared
before they are used.

A utility used to inspect the
contents of code files.

A state or action which will
take effect unless an
explicit action is taken to
choose another possibility.
For instsnce, in S(et
E(nvironment in the editor,
there are many options that
can be set. All of them
have default settings which
determine the operation of
the editor until they are
changed.

A-23

Appendix F

Default Disk

Delimiter

Device

Device Number

A-24

The volume where tlie
p-System looks for a f ile
unless the file specification
explicitly indicstes snother
volu`1,e®

A "fence" that marks the
boundaries of s sequence of
chai.8cters. In the editor,
for instance, delimiters
enclose the target string
sought by F(ind. These
delimiter charscters can't be
letters or numbers, but they
can tE any of the special
charactei.s, such as ''&" or„/,.

Peripheral equipment
accessible to the p-System.
There are two varieties:
storage and communication.
Origimlly, and sometimes
still, a device. was referred
to as a ''unit." This usage
has been changed to avoid
confusion with the UCSD
Pascal language construct of
the same name.

A number used to refer to a
particular storage or
communications volume. It
is always preceded by a
number sign (#) and
usually fouowed by a colon
(:). For example, #5:.

0100101:OAA

Appendix F

Direction lndicstor

Directory

Directory Listing

Editor

EDVANCE

Execute

0100101:OAA

In the Screenl)riented
Editor or EDVANCE, the
flag at the upper-left corner
of the screen that indicates
the assumed direction for
various editor operations.

An area on a storage
volume that contains
"housekeeping" information
(such as names and
locstions) about the files on
the volume.

A human-resdable list,
usually on the console, of
the fnes on a given storage
volume, along with
miscellaneous information
about each file.

A p-System program that is
used to examine, create and
modify text files.

The Advanced Editor.
EDVANCE incorporstes a
wide range of enhancements
over the p-System
Screen-Oriented Editor.

To give control of the
p-System to a program
(usually via the X(ecute
activity).

A-25

Appendix F

Execution Error

Execution
Option String

Extended Memory

A-26

An error detected by the
p-System during the
execution of a progi.am.
Wlien such an erroi. is
detected, a message is
produced on the console.
The message includes error
cooi.dinates indicating the
program section that was
executing when the error
occurred. Usually the
program must be canceled
and the p-System
reinitialized.

A sequence of execution
option statements, usually
entered in i.esponse to the
X(ecute prompt. Individual
execution options can affect
a variety of aspects of
p-System operation, such as
the prefix volume, the
source of input, and so on.

A f acility available on some
p-Systems thst allows
programs to use up to 64K
bytes of main memory for
data, plus another 64K bytes
for program segments.

0100101:OAA

Appendix F

File

File Specification

File Suf fix

Flosting Point
Number

Format

0100101:OAA

A named collection of
information on a storage
volume. Also (less
frequently), a stream of
information transmitted
through a communication
volume®

A description of s source
for input or a destination
for output in the p-System.
A file specificstion has
three major components, all
of wliicli are optional: the
Volume ID, the File Name,
and the Size Specification.

One of several special
endings for file names. The
fne suffix usually indicstes
the file type. TTie standard
file suffixes are .TEXT,
.CODE, .SVOL, .BACK,
.DATA, .BAD, and .FOTO.

See "Real Number.''

To prepare a disk for use
witli the p-System. This
involves writing addresses
and other control
information on the disk.
Any user information
preriously stored on the disk
is destroyed by this
operation.

A-27

Appendix F

FORTRAN-77

Foto File

Fragmented

Identifier

1/0

1/0 Error

A-28

A p.opular high level
programming language
supmrted in the p-System.

A file that contsins graphic
images for use by
Turtlegraphics. The name
of the file has the suffix
.FOTO; for example,
PICTURE.FOTO.

The condition of a p-System
storage volume when the
total unused space on it is
spread among msny small
areas. The size o.f the
largest file that can be
stored on a fragmented
volume is the size of the
largest single area.

The nsme of an ob].ect in a
programming language such
as Pascal.

Input and output.

An error detected by the
p-System during an input or
output operation. For
example, a disk write will
fail if the disk has been
inappropriately removed from
its drive. An 1/0 error is
one kind of execution error.

0100101:OAA

Appendix F

1/0 Redirection

1/0 Result

Instruction Set

Integer Number

Interpreter

KSAM

0100101:OAA

A feature that allows the
pTsystem's input to come
from some place other than
the keyboard. Also, output
for the p-System can be
sent to some place other
than the screen.

A number indicating the
success or f ailure of a
p-System 1/0 operation. If
this number is zero, the
operation was a success;
otherwise, the number
identifies the problem that
occurred during the 1/0
operation.

The fundamental operations
thst a microprocessor is
capable of performing.
Dif ferent kinds of
microprocessors usuany have
different insti.uction sets.

A whole number (without a
fractional part).

See "p-machine emulator."

Keyed sequential access
method; a file mamgement
facility available for the
p-System.

A-29

Appendix F

Library

Library Text File

Library Utility

Linker

Ijong lnteger

Marker

A-30

A code f ile that contsins
one or more units which can
be used by programs or
other units.

A text f ne containing a list
of library f ile names. When
a program is invoked, tlie
libraries listed in the
current librai.y text file sre
searched for any units
needed by the program.

The p-System library
management facility. It is
used to inspect, modify, and
create libraries and other
code files.

A p-System pi.ogram that
combines sssembled code
files with each other or
with a compiled code file.
Also caued a ''link editor."

A language featue of UCSD
Pascal that supports integer
srithmetic with up to 36
decimal digits of precision.

A mmed, invisible flag on a
particular location within a
text file,

0100101:OAA

Appendix F

Menu

Microprocessor

Module

Mount

Multitasking

Native Code

0100101:OAÄ

A list of avsilable aetivities
that is displayed on the
screen by the operating
system and many p-System
programs. An activity can
be selected from a menu
with a single keystrolte.

A miniaturized computei..
Provides the computational
power for most persoml
computers. Executes the
instructions of the software
running in the personal
computer.

A component of some larger
structure witli the attribute
that it can be handled
separately from the rest of
the structure in some serEe.
A UCSD Pascal unit is a
module of a program.

To cause a subsidiary
volume to be accessible to
the p-System.

The execution of two or
more tasks concurrently
within a single UCSD Pascal
Program.

Machine level code that is
produced by the native code
generator as the translation
of a section of p-code.

A-31

Appendix F

Native Code
Generstor

n¢ode

Nonblock-Structured
Device

Object Code

On-Line

A-32

;.r::#:a:ft::tetxreacn:::L::
piode file into native code.
The resulting code file
always contains a
combination of p-code and
n1ode®

See "Native Code."

Referred to in this book as
"Communication Volume.''
Earlier p-System
documentation, and many
p-System ppompts and error
messages still use
"nonblockTstructured device,"
or "unblocked device," when
referring to communication
volumes.

The machine-readable
representation of a computer
Pr08ram.

The ststus of s volume
when the p-System can
sccess it. For a storage
volume to be on-line, the
disk must be in the
appropriate drive. For s
communications volume to be
on-line, the 1/0 device must
be properly connected and
turned on.

0100101:OAA

Appendix F

Pascal

piode

p-machine

p-machine
emulator

PME

0100101:OAA

A widely used high level
language. UCSD Pascal, an
extended version of this
language, is the principal
programming lsnguage in the
p-System.

Psuedo¢ode: p-machine
code generated by the
p-System compilers and
executed by the p-machine
emulatol.S,

An ide alize d
pseudcrcomputer optimized
for high-1evel language
execution on small host
machines; the foundation of
the p-System's portability.

The part of the p-System
that allows a host
microcomputer to imitate
the opei.ation of the
p-machine. It is
implemented in the assembly
language of the host
computer.

See "p-machine emulator."

A-33

Appendix F

Portability

Prefix Disk

Print Spooler

Procedure

Pr08ram

Program Chaining

A-34

The ability to move
executable code between
dissimilar microcomputers
witllout recompilation ol.
other change. This is
possible in the p-System
because programs are
compiled into p-code that
can be executed on any
computer on which the
p-System has been instaned.

See "Default Disk.''

A facility for printing text
f iles concurrently with other
activities in the p-System
(particularly text editing).

A named subprogram that
handles part of the].ob of a
larger program or unit.

A set of detailed
insti'uctions that direct a
computei. in the performance
of a specific taslt. Also,
the process of creating such
a set of instructions.

Causir}g the automatic
execution of one program
fi.om another program.

0100101:OAA

Appendix F

Prompt

p-System

RAM

RAM Disk

Real Number

Reboot

Redirect

Root Volume

0100101:OAA

A request (by a p-System
program) for information
from the p-System user; the
user is expected to enter
the information at the
keyboard, followed by
<return>o

A portsble microcomputer
software environment for
execution and development
of applications programs.

Random Access Memory. A
computer's main memory.

A logical storage volume
maintained in main memory.
It can generany be used for
the same purposes as a
conventional disk volume
(including storage of f iles),
but the information it
contains is usually lost when
the computer is turned off.

A number that can have a
fractional part, such as
"5.67982".

To start up the p-System
again. To "rebootstrap."

See "1/0 Redirection."
`See "System Disk."

A-35

Appendix F

Run-time Software

Screen-Oriented
Editor

Script File

Se8ment

Source Text

Special Character

A-36

p-System software that is
needed to run programs.

The principal text editing
tool of the p-System. It is
optimized for use with
display consoles, rather than
printing consoles.

A file contsining chai.acters
repi.esenting the keystrokes
that you would type during
a session with the p-System.
When p-System input is
redirected to this script
file, those keystrokes are
read as if they were coming
from the keyboard, and the
session is recreated.

See ''Code Segment."

The human~readable form of
a computer program. (Also
referred to as ''source
code.")

A visible character that
isn't a number (0 through 9)
and not a letter (A through
Z). Examples of special
characters include ''*", "r,
"(", and "@".

0100101:OAA

Appendix F

Special Key

Storage Volume

Subsidiary Volume

Substitute String

.SVOL File

0100101=OAA

A keyboard key that has a
particular meaning to the
p-System other than
representing an ordinary
visible character. Example:
the <return> key.

An input/output device that
can store information
written to it, for retrieval
at a later time. Usually
some sort of a disk, but can
be an areQ of main memory,
8s wen. (See "RAM Disk.")

A file on a storage volume
that contains its own volume
structure with a directory
and f nes. This subsidiary
volume becomes accessible
to the p-System when it is
''mounted." The subsidiary
volume facility of p-System
Version IV.1 supports a
two-1evel file heirarchy.

"`e character pattern that
is to take the place of
instances of the target
string which are found by
the R(eplace activity in the
Screen-Oriented Editor.

A file identified by the
suffix .SVOL that contains a
subsidiary volume; for
example, NAME.SVOL.

A-37

Appendix F

Syntax

Syntax Eri.or

System Disk

System Files

Target String

Text File

A-38

The rules govei.ning the
structure of a progi`am
written in a computer
pro8ramming langusge.

A place in a computer
progi`am where the rules of
the programming langusge
are violated.

The disk from which the
p-System was bootstrspped.
It contains the opersting
system software. Also
known ss ''root'' or ''boot''
disk. All three of these
adjectives also occur with
''volume" instead of "disk."

The disk files which contsin
the main components of the
p-System.

The character psttern
sought by the F(ind and
R(eplace activities in the
Screen-Oriented Editor.

A file that contains
user-readable information (as
opposed to machine code);
usually identified by one of
the suffixes .TEXT or
•BACK.

0100101:OAA

Appendix F

Tutlegraphics

Type Ahead

UCSD

UCSD Pascal

UCSD. Pascal System

Unblocked Volume

Unit

0100101:OAA

A package of routines that
creates and manipulates
images on a graphic display.

A capability of a p-System
implementation to store
keystrokes that are typed
before the p-System is ready
to process them.

University of California at
San Diego. Site of the
original development work
on the pisystem.

A programming language, an
extended version of the
language Pascal.

The original name of the
p-System.

See "Nonblock-Structured
Volume."

A package of routines and
associated data structures
written in a p-System
programming language
(usuany UCSD Pascal). The

:#]!t(;ersimB]uebms::teodfbtyh:#
can be used by programs or
by other units.

A-39

Appendix F

Universal Medium

Utilities

Volume

Volume ID

Wild Cards

A-40

A 5-1/4" diskette format
that is accessible to many
types of small computers.
It facilitates the distribution
of p-System based personal
computer application
programs.

Programs that assist in
various areas of p-System
use such as developing
programs, maintaining files,
printing files, and so forth.

A logical entity representing
a p-System peripheral
device. There are two
categories of volumes:
storage volumes (such as a
disk) and communicaton
volumes (such as the console
or the printer).

Short f or ''Volume
ldentif ier." The desigmtion
of a particular volume; for
instance, its name or device
number.

Special symbols in file
names that 81low a group of
files to be represented by a
single file name.

0100101:OAA

Appendix F

Window

Work File

Work-Space

Ol ool ol:OAA

In the Screenoriented
Editor, the portion of the
display screen that is used
to show a section of the
workspace being edited.

Special file(s) that are
automatically processed by
major p-System components,
including the editors and
compilers. "is automatic
handling is particularly
convenient during the
development of small
Pr08rams.

Text kept in main memory
by a p-System Editor during
the editing process. Also
called the ''buffer."

A-41

Appendix F

Write-Protect

XenoFile

YALOE

A-42

Mark a storage volume in
some way so that an error
is reported if the p-System
attempts to write
infoi.mation onto the volume.
(`Reading is allowed, but
wi.iting isn't.) Used to
protect valuable data from
accidental erasure. The
physical mechanism used to
sigml write-protection of a
volume varies with the
stoi`age medium used. For
instance, 5-1/4" diskettes
have a dif fei.ent convention
than 8" diskettes. Check
the documentation foi. your
computer to find out how to
write-protect the media that
you use.

A utility package that
auows you to access disks
that contain data formatted
for the CP/M operating
system.

Yet Anotlier Line-Oriented
Editor; the p-System editor
used with printing terminals
rather than with display
terminals.

0100101=OAA

®

INDEX

-1-
#4 3-10
5 3-10

-S-
S............................3-22

+

*. . ' . ' ' ' ' ' . ' . ' ' . . ' ' 3-10, 3-16

-,-
O

:............................3-10

L=L-

=............................3-22

-,-
? ' 3-20, 3-22

A(bort......,
asterisk......

0100101:OIA

-A-
............... 5-53
• ' . . . ' ' . ' . 3-10, 3-16

1-1

-8-

Index

•BACK.......
BACKSPACE. . .
.BAD........
blockitructured .
booting problems

CHAIN . . .
•CODE. . .
code files.

-C-
'O,,,,,®

®,,®,®,

®,®O,,,

CODE P00L BASE[FIRST WORD]. .
CODE POOL BASE[SECOND WORD].
CODE POOL SIZE
colon, , , o , , , ® o o o

Command menu
communication device
C(omp-unit.......
COPYDUPDIR.....
CUI.SOI., , o c o o ,,,,

data files
Debugger........
debugger........
default disk
device numbers
devices.........
directory........
disk swapping
duplicate directory. .

1-2

-D-
...... 3-12
..... A-12
...... 2-14
...... 3-10
...... 3-5

•'3-10' 3-15
• ' 3-5, 3-30
...... 2-8
' '3-30, 5-92

010 01 01 s OIA

Index

-E-
E(dit..........................4-3
editing ' . ' . . . ' ' ' . ' 1-3
E(ditor.........................1-3
EDIT`OR ACCEPT KEY 5-66
EDITOR ESCAPE KEY 5-67
EDITOR EXCHANGE-DELETE KEY 5-67
EDITOR EXCHANGE-INSERT KEY 5-67
EDVANCE.......................4-3
ERASE LINE 5-67
ERASE SCREEN 5-67
ERASE TO END OF LINE 5-68
ERASE TO END OF SCREEN 5-68
E(very.........................5-54
E X C E P TI0 N 2-2 8
execution option strings 2-26
extended memory A-14

-F-
file 2-6, 3-5
file handling 1-3, 3-5
file names 3-6
File Name Suffixes 3-12
File Name Syntax 3-6
F(iler 1-3, 3-5, 3-44-3-101

B(ad Blocks 3-45
C(hange 3-4 7
D(ate.......................3-52
E(xtended List 3-54
F(lip Swap/Lock 3-56
G(et 3-19, 3-58
K(runch 3-6 0
L(ist Directory 3-63
M(ake 3-6 8

0100101:OIA 1-3

Index

N(ew......
O(n/of f-line .
P(refix....
Q(uit......
R(emove...,
S(ave.....,
T(ransfer. . .
V(olumes. . .
W(hat.....
X(amine....
Z(ero.....

Filer Menus. . .
file size, o , , ,
F(i,l...................
FIRST SUBSIDIARY VOL NUMBER
floating point packages
.FOTO..................
four-word reals

3-19' 3-70
..... 3-71
..... 3-74
.... 3-76

..... 3-11
•3-19' 3-80
.... 3-82
..... 3-93
.3-19, 3-95
.... 3-96

..... 3-99
..... 3-20
.3-11, 3-68
..... 5-55
..... 5-68
..... A-6
3-12, 3-14
..... A-6

-H-

AS 8510A 5-69
AS BYTE FLIPPED MACHINE 5-69
AS CLOCK 5-69
AS EXTENDED MEMORY 5-70
AS LOWER CASE 5-70
AS RANDOM CURSOR ADDRESSING 5-70
AS SLOW TERMINAL 5-70
AS SPO0LING 5-71
AS WORD ORIENTED MACHINE 5-71

=1=
I(nput.........................5-55

1-4 0100101:OIA

Index

-K-

KEYBOARD INPUT MASK 5-71
KEY FOR BREAK 5-71
KEY FOR FLUSH 5-72
KEY FOR STOP 5-72
KEY T0 ALPHA LOCK 5-72
KEY TO DELETE CHARACTER 5-73
KEY TO DELETE LINE 5-73
KEY TO END FILE 5-73
KEY TO MOVE CURSOR DOWN 5-74
KEY TO MOVE CURSOR LEFT 5-74
KEY T0 MOVE CURSOR RIGHT 5-74
KEY TO MOVE CURSOR UP 5-74

-L-
LEAD IN FROM KEYBOARD
LEAD IN TO SCREEN
librery..................
Library's menu
Libpary Utility
lost files® , , o , , , o ® o ® , ® , ®

-H-
M(Qlte 3-2 7
MARKDUPDIR 3-31, 5-93
MAX NUMBER OF SUBSIDIARY VOLS 5-75
MAX JNUMBER OF USER SERIAL VOLS 5-76
Menus..........................2-3
MOVE CURSOR HOME 5-77
MOVE CURSOR RIGHT 5-77
MOVE CURSOR UP 5-78

-N-
N(ew.........................5-53

0100101:OIA 1-5

Index

nonblockitructured device. .
NONPRINTING CHARACTER

-0-
O(n/off-line..........
opersting system
Opersting System Commsnds

A(ssemble..........

. 3-15
5-78

...... 3-39
...... 2-3
...... 2-9

...... 2-10
C(om pile' 2-12
D(ebug 2-14
E(dit 2-15
F(ile 2-16
H (8lt 2-17
I(nit iali ze 2-18
L(ink 2-19
M(onitor 2-2 0
R(un 2-2 2
U(ser Restart 2-23
X(ecute 2-2 4

0(utput 5-5 5

-P-
PATCH.............
prefix.............,
PREFIXED[item name]. . .
PRIN T

.......... 3-29

PRINTABLE CHARACTERS. . ,
program input
program output
Prom pts

........ 2-28
........ 5-78
......... 5-4
........ 5-78
........ 2-29
......... 2-29
......... 2-5

-Q-

Q(uit 2-5, 5-53

1-6 0100101:OIA

Index

-R-
REAL CONVERT
real number size
RECOVER.........
Recovering Lost Files.
REDIRECT........
redirection........,
R(efs............

-S-
scratch input buffers. .
screenoriented editor.

A(djust........
auto-indent......
command character.
control keys
C(opy.........
C(opy F(ile
cursoi., , o o , ® ® ® ,

D(elete..,.,...
direction indicstor.
equals
filling
F(ind .
global direction. .
I(nsert.........
J(ump.........
K(olumn........
M(argin........
mar8ins........
marker........
markers........
moving the cursor.
P(age.........

0100101:OIA

.......... 5-47
........... A-6
...... 3-29, 5-95
.......... 3-27
.......... 2-28
. .2-26, 2-33, 2-34
.......... 5-53

.... 2-29, 2-32
......... 4-3
........ 4-20

.... 4-32, 4-47

.... 4-39, 4-48
......... 4-8
........ 4-22
........ 4-23
......... 4-8
. . . 4-17, 4-25
......... 4-8
......... 4-9
... 4-32, 4-47

4-13, 4-28, 4-34
.4-8
4-31
4-35
4-36

........ 4-37
......... 4-48
........ 4-35

• ' . . 4-24, 4-50
........ 4-10
........ 4-40

1-7

Index

Q(uit..........
repest factors
R(eplace........
S(et...........
S(et E(nvironment. .
S(et M(arker
special keys
tab stops
tokens® . ® , . . ® , ®

V(erify.........
work f ile
X(change.......,
Z(ap..........,

screen display pi.oblems
SCREEN HEIGHT
SCREEN WIDTH
SEGMENT ALIGNMENT.
segments..........
S(elect...........
separate compilations. .
serial devices
SETUP........
storage device. . .
STUDENT......
subsidiary volumes.
•SVOL........
system disk
system files

SYSTEM.ASSMBLER
SYS TE M . CO MPI LE R
SYSTEM.EDITOR. .
sysTEM.r`ILER. . .
SYSTEM.INTERP. .
SYSTE M.LIBR AR Y .
SYSTEM.l,INKER. .
SY S TE M .LS T .TE XT .
SYSTEM.MENU. . .
SYSTEM.MISCINFO .

1-8

........ 4-41
......... 4-7
.... 4-13, 4-43
........ 4-46

. 4-6, 4-31, 4-46
........ 4-50
......... 4-8
........ 4-49
........ 4-50
........ 4-52
........ 4-15
........ 4-53
........ 4-55

........ A-17

........ 5-79
........ 5-79
........ 5-80
........ 3-56
........ 5-55
........ 5-50

........ 3-43

.... 3-42, 5-56
• ' ' ' '3-5' 3-15
........ 5-80

3-10, 3-33, 5-61
3-12, 3-14, 3-34
........ 3-10
.... 1-12-5-56

•... 1-13, 2-10
.... 1-13, 2-12
. 1-13, 2-15, 4-3
........ 2-16
........ 1-14
• ' . ' 1-14, 2-28
........ 2-19
........ 3-18
........ 1-14
. 1-12, 4-3, 5-56

0100101:OIA

Index

SY STEM . P ASC A L 1 -12
SYSTEM.STARTUP 1-14, 2-18
SYSTEMSYNTAX 1-13, 2-13
SYSTEM.WRK.CODE 2-10, 2-12, 3-18
SYSTEM.WRK.TEXT 2-10, 2-12, 3-18, 4-41

system input 2-30
system output 2-30

-T-
TEXT....................
text files 2-6,
T(og...........
two-word reals. . .

-U-
UNIT PASCALIO
user-defined serial devices
user library
USE RLIB.TE XT
using Library
utilities® , , , o , , ® ® , , ® ® , ,

-V-

VERTICAL MOVE DELAY
volume lD
Volume ID Syntax
volume name
volume numbers,
volumes...............

-W-

Wild Cards 3-22

0100101:OIA 1-9

Index

window® , ® , ,
work file. . ®
WRITELN. . .

.............. 4-4
...... 2-22, 3-18, 3-58
.............. 5-51

-Y-
Y ALO E 4-3

1-10 0100101:OIA

Code 3986630 L (0)
Printed in ltaly

olivetti

Code 3986630 L (0)
Printed in ltaly

~

olivetti

