M 20 PERSONAL COMPUTER

UCSD p-System
Operating System User Guide

|
i
!
b

’ M 20 PERSONAL COMPUTER

'Guide to the use on M20

|

PREFACE

This manual describes the UCSD p-System running on the Olivetti M20 pe-
sonal computer. 1t covers the operational aspects of UCSD p-System th:
are not detailed in the manual UCSD p-System Operating System User Guide
The facilities, not wusually available with UCSD, but provided with t
M20 version, are described in detail. All the M20's national keybea-
versions are also listed, with associated character codes.

REFERENCES :

UCSD p-System Operating System User Guide Code: 3986630 L

UCSD p-System Program Development User Guide Code: 3986640 M

M20 Guide to Installation and Operations Code: 3986200 M

M20 1/0 with External Peripherals User Guide Code: 3982300 N
DISTRIBUTION: General (G)

FIRST EDITION: January 1984

RELEASE: p-System 1V

UPDATING: May 1584

p-System is a registered trademark
of Softech Microsystems Inc.

UCSD and UCSD Pascal are
trademarks of the Regents PUBLICATION 1SSUED BY:
of the University of California
ING. C. OLIVETTI & C., S5.P.A.,
Copyright 62)1984, by Olivetti Direzione Documentazione
All rights reserved 77, Via Jervis-10015 IVREA (ltaly)

i1

Title: ucsp p-System Guide to the Use on M20

Newsletter Code: 3986391 M

Date: 30/05/84

Publication Code: 3986390 L
Previous Newsletters: None

This Newsletter provides updated pages for the subject publication.

The last level completed on the attached form, Updating Status, indicates the pages
to be added, removed, or replaced, the number of pages included, and the Newsletter
Code. Pages marked with an asterisk should be removed from the publication. The form
should be filed at the back of the publication as a permanent record of amended pages.

Each amended page is identified by the Newsletter Code shown above.

Amended pages remain valid unless otherwise noted in a subsequent Newsletter.
Modifications to text, figures, or tables are indicated by a vertical bar in the outside
margin next to the change.

Summary of Amendments:

Addition ot Appendix B with consequent update of contents.
Appendix B gives all the national keyboards and the codes
they produce.

ing. C. Olivetti & C., S.p.A. — Direzione Documentazione — Via Jervis 77, — 10015 IVREA (TO) Italy
Copyright © 1984, by Olivetti - All rights reserved Printed in Italy

UPDATING STATUS

LEVEL | DATE UPDATED PAGES PAGES CODE

.

7 ///
7 7 f’//,/ ’,/// 1

o

3986390 L

2/05/84 | Preface, iv, B., Contents, B-1 - B-28 32 13986391 M

~ | O | O

@9

9

Pages marked * must be suppressed

PAGE

1-1
1-1

1-1

1-2
1-2
1-2
1-2
1-4

1-5

2-1
2-1
3-1
3-1

3-1

CONTENTS

1. OVERVIEW

INTRODUCTION

HARDWARE REQUIREMENTS

HARDWARE CONF IGURATIONS

BOOTING UCSD

PRIMARY BOOT
SECONDARY BOOT
CONTENTS OF THE UCSD SYSTEM DISKETTE

OTHER UCSD DISKETTES

THE QUICKSTART DOCUMENT

2. KEYBOARD CONSIDERATIONS

INTRODUCTION

NOTES ON TABLE 2-1

3. UCSD UTILITY PROGRAMS FOR THE M20

INTRODUCTION

THE CONFIGURE UTILITY

P(RINTER OPTION
REMOTE OPTION

THE DISKFORMAT UTILITY

4. SPECIAL PROCEDURES FOR UCSD ON THE M20

INTRODUCTION

MEMORY EXPANSION PROCEDURE

iii

PAGE
4-1
A-1
A-1

A1

A-2
B-1
B-1

B-3

B-25
B-27

iv

TURTLEGRAPHICS INSTALLATION PROCEDURE

A. HARD DISK AND DISKETTE CHARACTERISTICS

THE HARD DISK UNIT

CHARACTERISTICS

DISKETTES

CHARACTERISTICS

B. NATIONAL KEYBOARDS LAYOUTS AND CODES

NATIONAL KEYBOARDS LAYOUTS AND CODES

DENMARK KEYBOARD

FRANCE KEYBOARD

GERMANY KEYBOARD

GREAT BRITAIN KEYBOARD
ITALY KEYBOARD

NORWAY KEYBOARD

PORTUGAL KEYBOARD

SPAIN KEYBOARD

SWEDEN/F INLAND KEYBOARD
SWITZERLAND FRENCH KEYBOARD
SWITZERLAND GERMAN KEYBOARD
USA ASCIT KEYBOARD
YUGOSLAVIA KEYBOARD

UCSD p-System Guide to the Use on M20

B. NATIONAL KEYBOARDS LAYOUTS
AND CODES

ABOUT THIS APPENDIX

Here we list all the national keyboard revisions and the codes they
produce.

CONTENTS

B. NATIONAL KEYBOARDS B-1
LAYOUTS AND CODES5

DENMARK KEYBO0ARD B-3
FPANCE KEYBUARU B-5
GERMANY KEYBOARD 8-7
GREAT BRITAIN KEYBOARD B-9
ITALY KEYBOARD B-11
NORWAY KEYBOARD B-13
‘PORTUGAL KEYBOARD B-15
SPAIN KEYBOARD B—17.
SWEDEN/FINLAND KEYBOARD B-19

SWITZERLAND FRENCH KEYBOARD B-21

SWITZERLAND GERMAN KEYBOARD B-23

USA ASCI1 KEYBOARD B8-25

YUGOSLAVIA KEYBOARD B-27

NATIONAL KEYBOARDS LAYOUTS AND CODES

NATIONAL KEYBOARDS LAYOUTS AND CODES

Each of the national keyboards is described by a figure that illustrates
the keyboard layout, and a table that relates the key or key combination
struck to the code generated. That is, the table shows the 16 bit code
(in hexadecimal) generated for each key whether struck on its own, or in
conjunction with the <SHIFT>, <CTRL>, or <COMMAND> key.

The first eight bits (first two hexadecimal digits) are returned 1in the
AH register., The second eight bits (the third and fourth hexadecimal
digits) contain the ASCll code and are returned in the AL register.

The keyboards are each toured in the same physical sequence, in ascending
order of raw key codes of the key struck on its own. The raw key code is
the code that is immediately generated when a key or key combination is
struck before it 1is translated by system tables. That is, it depends
entirely on the physical position of the key. The raw key codes are shown
in the following figure.

2 feo B0

£}
3

82 w3

@
g

22 52

%5 45\ (7 s4) (76 48
AR AR

L2 e
72 22\ (16 86\ (66 us) (7
COMMAND D
1 6 48] \o6 36

Key struck Key struck
with with
(um Y 4
it 62 92
LEGEND: /\
02 32 Key struck
ey struci
7 = with
Key struck

on its own SHIFT

Fig. B-1 Raw Key Codes

Remark

The shift-lock
right-hand key
with the <COMMA

shift-lock

cursor-lock

B-2

and cursor-lock functions are enabled by the bottom
(<?/> on the USA ASCI1 keyboard) struck in conjunction
ND> or <CTRL> key respectively. UWhere:

infers that all alpha keys on the alphanumeric keypad
subsequently take on shifted values. That is, an alpha
key struck on its own will generate an upper case charac-
ter. Moreover, an alpha key struck in conjunction with
the <SHIFT> key will generate a lower case character. The
shift-lock is disabled by re-entering <COMMAND> <?/>

infers that all keys on the numeric keypad subsequently
take on shifted values. That is, if such a key is struck
on its own it will generate the code normally associated
with pressing the same key in conjunction with the
<SHIFT> key. Moreover, if such a key is pressed in conj-
unction with the shift key, it will generate the
unshifted value. The cursor lock 1is disabled by
re-entering <CTRL> <?/>.

UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

DENMARK KEYBOARD

Fig. B-2 Denmark Keyboard

Alphanumeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 0018 3000 trapped trapped
N < 013C 313€ 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
0B j 0B6A 3B4A 680A 2400
0c k 0C68B 3C48 6C08B 2500
00 1 0DsC 3D4C 6D0C 2600
0E m OE6D 3E4D 6E0D 3200
oF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
11 [o] 1170 4150 7110 1900
12 q 1271 4251 721 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

8-3

19 X 1978 4958 7918 2000
1A y 1A79 4A59 7A19 1500
18 z 187A 485A 781A 2C00
1C 0 1C30 4C30 4400 5000
10 1 1031 4021 3800 5400
1E 2 1E32 4E22 3C00 5500
1F 3 1F33 4F23 3p00 5600
20 4 2034 5024 3E00 5700
21 5 2135 5125 3F00 ‘ 5800
22 6 2236 5226 4000 5900
23 7 2337 532F 4100 5A00
24 8 2438 5428 4200 5800
25 9 2539 5529 4300 5C00
26 + 2628 563F 8600 6800
27 4 2740 5760 8700 6900
28 & 2870 585D 0300 6A13
29 - 297€ S95E 8900 681C
2A ae 2A78 5A58 701E 6C00
28 @ 287C 585C 7E1F 6D00
2C ' 2027 5C2A 8C1D 6E00
20 R 2D02C 5038 8DCO 6F00
2E . 2E2E SE3A 7100 7000
2F - 2F20 SF5F trapped trapped
co SPACE Cc020 D420 £820 C020
(] o c10D D500 E9CA c100
c2 S1 c208 D608 EATF Cc208
c3 S2 C309 D709 0F00 Cc309
Numeric Section
RAW KEYTOP R ALONE with with with
KEY SHIFT CTRL COMMAND
CODE
c4 . 5200 D800 772E 5200
c5 0 5300 0900 6730 5300
6 00 7200 trapped 7830 7200
c7 1 4F00 pBoo 5e31 4F00
[o:} 2 1142 0C00 SF32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
o] 5 4700 DFO0 6235 4700
cC 6 1143 E000 6336 1143
cb 7 4700 E100 6437 4700
CE 8 141 E200 6538 110
CF 9 4900 E300 6639 4900
Do + 7328 £428 7C28B 7328
" - 7420 E520 782D 7420
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

B-4 ‘ UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

FRANCE KEYBOARD

RSET!
L ——

N TN e
omag ()2 1R

N A
LE e

W n
CASINONIBINIDININIBIGEIE

R
E SPACE J

Fig. B-3 France Keyboard

Alphanumeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 001B 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 q 027 3251 6211 1000
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 q 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
08 j 0B6A 3B4A 6B0A 2400
oc k 0céB 3C48 6C0B 2500
00 1 0D6C 3D4C 6D0C 2600
113 ' 0E2C 3E3F 6E0D 6C00
oF n OF6E 3F4E 6FQE 3100
10 o 106F 404F 700F 1800
11 p 1170 4150 7110 1900
12 a 1261 4241 7201 1E00
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 2 187A 485A 781A 2C00 N

B-5

19 X 1978 4958 7918 2000
1A y 1A79 4A59 7419 1500
1B w 1877 4857 7817 1100
1C 3 1C40 4C30 4400 5000
1D £ 1023 4031 3800 5400
1E é 1E78 4e32 3C00 5500
1F o 1F22 4F33 3000 5600
20 ' 2027 5034 3e00 5700
21 (2128 5135 3F00 5800
22 - 2220 5236 4000 5900
23 é 2370 5337 4100 SAQOQ
24 245F 5438 4200 5800
25 3 255C 5539 4300 5C00
26) 2629 5658 8600 6800
27 = 273D 5728 8700 6900
28 - 285E 587€ 0300 6A13
29 $ 2924 592A 8900 6B1C
2A m 2A6D 5A40 BA1E 3200
28 4 2B7C 5825 7E1F 6000
2C . 2C60 5C26 8C10 6E00
2D H 2D3B 502t 7000 6F00
2E H 2E3A SE2F 7100 7000
2F ! 2F 21 5F50 trapped trapped
co SPACE Cco20 D420 E820 €020
(] J c100 D50D E90A c1oD
Cc2 S1 c208 D608 EA7F €208
Cc3 S2 €309 0709 0F00 C309
Numeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

c4 . 5200 D800 772 5200
(o} 0 5300 D900 6730 5300
Ccé6 00 7200 trapped 7830 7200
c7 1 4F00 DBOO SE31 4F00
c8 2 1142 pcoo S5F32 1142
c9 3 5100 bDOO 6033 5100
CA 4 1144 DEOO 6134 1144
c8 5 4700 DFOO0 6235 4700
cc -] 1143 E000 6336 1143
co 7 4700 £100 6437 4700
CE 8 14 E200 6538 1140
CF 9 4900 £300 6639 4900
DO + 7328 £428 7C28 7328
0 - 742D ES52D 782D 7420
D2 * 752A E62A 7A2A 752A
b3 / 762F E72F 792F 762F

B-6 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

GERMANY KEYBOARD

Fig.

B-4 Germany Keyboard

Alphanumeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 0018 3000 trapped trapped
01 < 013C 313€ 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6903 2300
0A i 0A69 3A49 6A09 1700
08 j 0B6A 3B4A 6B0A 2400
0C k 0Cs68 348 6C0B 2500
00 1 0D6C 3p4C 600C 2600
0E m OE6D 3E4D 6ECD 3200
OF n OF6E 3F4E 6F0E 3100
10 (] 106F 404F 700F 1800
1" p 1170 4150 7110 1900
12 q 127 4251 7211 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 w 1877 4857 7817 1100

19 x 1978 4958 7918 2000
1A z 1A7A 4A5A TATA 1500
18 y 1879 4B59 7B19 2C00
1C 0 1€30 4Cc3D 4400 5000
10 1 1031 4021 3800 5400
1E 2 1£32 4£22 3C00 5500
1F 3 1F33 4F40 3000 5600
20 4 2034 5024 3E00 5700
21 S 2135 5125 3F00 5800
22 6 2236 5226 4000 59GCC
23 7 2337 532F 4100 5A3.
24 8 2438 5428 4200 5800
25 9 2539 5529 4300 5C00
26 8 267E 563F 8600 680C
27 ' 2727 5760 8700 6900
28 u 2870 5850 0300 6A1 3
29 + 2928 592A 8900 6B1.
2A <} 2A7C SA5C 701E 6CCC
28 a 2878 5858 TE1F 5000
2C # 2€23 5C5E 8C10 6800
20 , 202C 5038 8000 6F U0
2€ . 2E2E SE3A 7100 7000
2F - 2F2D 5FSF trapped traoped
co SPACE co20 D420 £820 €020
C1 c10D D500 E9CA c100
c2 S1 c208 D608 EA7F €208
c3 52 €309 D709 0F00 €309
Numeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

[oF:} . 5200 D800 772€ 5200
cs 0 5300 D900 6730 5300
cé 00 7200 trapped 7830 7200
c7 1 4F00 DB0O 5E31 4F00
cs8 2 1142 DCOO 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEQO 6134 1144
c8 5 4700 DFOO0 6235 4700
cc 6 1143 E000 6336 1143
co 7 4700 E100 6437 4700
CE 8 141 E200 6538 114
CF 9 4900 E300 6639 4900
DO + 7328 E428B 7C28 7328
D1 - 742D £520 7820 7420
D2 * 752A E62A TA2A 752A
D3 / 762F E72F 792F 762F
B-8 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

GREAT BRITAIN KEYBOARD

Fig.

Alphanumeric Section

B-5 Great Britain Keyboérd

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 0018 3000 trapped trapped
01 \ 015C 317¢C 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
0B j 0B6A 3B4A 6BOA 2400
0oC k 0C68 3C4B 6C0B 2500
oD 1 0D6C 304C 6D0C 2600
OE m OE6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
1 p 1170 4150 7110 1900
12 q 127 4251 721 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 w 1877 4857 7817 1100

8-9

19 X 1978 4958 7918 2D00
1A y 1A79 4A59 7A19 1500
18 z 1B7A 485A 781A 2€00
1C 0 1€30 4C5F 4400 5000
10 1 1031 4021 3800 5400
1E 2 1£32 4E22 3C00 5500
1F 3 1F33 4F23 3D00 5600
20 4 2034 5024 3E00 5700
21 5 2135 5125 3F00 5800
22 6 2236 5226 4000 5900
23 7 2337 5327 4100 5A00
24 8 2438 5428 4200 5B00
25 9 2539 5529 4300 5C00
26 - 262D 563D 8600 6800
27 - 275E 577€ 8700 6900
28 @ 2840 5860 0300 6A13
29 [2958 5978 8900 681C
2A ; 2A38 5A28 701E 6C00
28 : 2B3A 5B2A TETF 6000
2C] 2050 5C70 8C10 6E00
20 , 202C 5D3C 8000 6F00
2E . 2E2E 5E3E 7100 7000
2F / 2F2F SF3F . trapped trapped
co SPACE 020 D420 EB20 €020
(] J €100 D50D E90A c100
c2 St €208 D608 EATF c208
c3 p2 €309 D709 0F00 C309
Numeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

c4 . 5200 0800 772€ 5200
c5 0 5300 D900 6730 5300
Ccé 00 7200 trapped 7830 7200
c7 1 4F00 DBOO 5E31 4F00
c8 2 1142 DCOO 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
o] 5 4700 OF 00 6235 4700
cc [1143 £000 6336 1143
ch 7 4700 E100 6437 4700
CE 8 14 £200 6538 1141
CF 9 4900 £300 6639 4900
Do + 7328 E428 7c28 7328
0 - 7420 £520 782D 742D
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

8-10 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

1ITALY KEYBOARD

Fig. B-6

Alphanumeric Section

Italy Keyboard

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 324 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
0% d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
08 j 0B6A 3B4A 6B0A 2400
oc k 0ces8 348 6C0B 2500
00 1 0D6C 3D4C 6DoC 2600
0E y 0e2C 3E3F 6E1E 6C00
oF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
11 p 1170 4150 7110 1900
12 q 127 4251 721 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 z 187A 485A 7817 2C00

B-11

19 X 1978 4958 7918 2D00
1A y 1A79 4A59 7A19 1500
18 w 1877 4857 7B1A 1100
1C a 1C78 4C30 4400 5D00
10 £ 1023 4031 3800 5400
1E é 1E5D 4E32 3C00 5500
1F " 1F22 4F33 3000 5600
20 ' 2027 5034 3E00 5700
21 (2128 5135 3F00 : 5800
22 _ 225F 5236 4000 5900
23 é 2370 5337 4100 5A00
24 - 245E 5438 4200 5B00
25 S 255C 5539 4300 5C00
26) 2629 5658 8600 6800
27 - 272D 5728 8700 6900
28 i 287€ 5830 0300 6A13
29 $ 2924 5926 8900 6B1C
2A m 2A6D 5A4D 8AOD 3200
2B] 2B60 5825 7E1F 6000
2C * 2C2A 5C40 8C1D 6E00
20 H 2038 5D2E 7000 6F00
2E : 2E3A SE2F 7100 7000
2F & 2F7C 5F21 trapped trapped
co SPACE €020 D420 E820 €020
1 J Cc100 D500 E90A 10D
c2 S c208 D608 EA7F c208
c3 S2 €309 D709 OF00 €309
Numeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

c4 . 5200 D82E 7700 5200
o) 0 5300 D930 6700 5300
cé 00 7200 trapped 7800 7200
c7 1 4F00 DB31 5EQ0 4F00
[«:) 2 5000 0C32 S5F00 5000
(o) 3 5100 0D33 6000 5100
CA 4 4800 DE34 6100 4B00
o] 5 4700 DF35 6200 4700
cC 6 4000 E036 6300 4D00
cD 7 4700 E137 6400 4700
CE 8 4800 E238 6500 4800
CF 9 4900 E339 6600 4900
Do + 7300 E428B 7C00 7300
b} - 7400 £520 7800 7400
D2 * 7500 E62A 7A00 7500
D3 / 7600 E72F 7900 7600

B-12 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYQUTS AND CODES

NORWAY KEYBOARD

SIS HNNO 0006 8ENS 060
(ome) (@) (w) e) (R} (D)

S N
SI0BI0IGINI0 8]@
T T N aVan
ssonooboossaetieooon
- ™
‘ J

Fig. B-7 Norway Keyboard

Alphanumeric Section
RAW KEYTOP ALONE with with with
KEY SHIFY CTRL COMMAND
CODE
00 RESET 001B 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2€00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
08 j 0B6A 3B4A 680A 2400
oc k 0C68B 3C4B 6C0B 2500
0D 1 0De6C 304C 600C 2600
OE m 0E6D 3€4D 6E0D 3200
OF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
n p 1170 4150 7110 1900
12 q 127 4251 7211 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 w 1877 4857 7817 1100

19 x 1978 4958 7918 2000
1A y 1A79 4A59 7A1A 1500
18 z 187A 4B5SA 7819 2C00
1C 0 1C30 4C3D 4400 5000
10 1 1031 4021 3B00 5400
1E 2 1E32 4E22 3Co0 5500
1F 3 1F33 4F23 3000 5600
20 4 2034 5024 3E00 5700
21 5 2135 5125 3F00 5800
22 6 2236 5226 4000 5900
23 7 2337 532F 4100 5A00
24 8 2438 5428 4200 5800
25 9 2539 5529 4300 5C00
26 + 2628 563F 8600 6800
27 3 2740 5760 8700 6900
28 a 2870 5850 0300 6A13
29 = 297E 595€ 8900 6B1C
2A g 2A7C 5A5C 7D1E 6C00
28 ae 2878 5858 7E1F 6000
2C | 2C27 5C2A 8C1D 6E00
20 " 202C 5038 8D1C 6F00
2E = 2E2E SE3A 7100 7000
2F - 2F2D SFSF trapped trapped
co SPACE C020 D420 E820 Cc020
c1 Y C100 D500 E90A c100
c2 S1 Cc208 D608 EA7F c208
€3 S2 C309 D709 0F00 C309
Numeric Section
RAS KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE
ca % 5200 D800 772E 5200
cs 0 5300 D900 6730 5300
cé 00 7200 trapped 7830 7200
c7 1 4F00 DBOO 5E31 4F00
c8 2 1142 DCOO 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
cB 5 4700 DF00 6235 4700
cc 6 1143 EOQ0 6336 1143
CcD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141
CF 9 4900 E300 6639 4900
DO + 7328 E428B 7C28 7328
D1 - 7420 ES52D 782D 742D
D2 * 752A E62A TA2A 752A
D3 v 762F E72F 792F 762F

B-14 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

PORTUGAL KEYBOARD

Fig.

Alphanumeric Section

B-8 Portugal Keyboard

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
0B j 0B6A 3B4A 6B0A 2400
ocC k 0C6B 3C48B 6C0B 2500
0D 1 0D6C 3p4C 600C 2600
0E m 0E6D 3E4D 6E0D 3200
OF n OF6E 3F4E 6FOE 3100
10) 106F 404F 700F 1800
1" P 1170 4150 7110 1900
12 q 1271 4251 7211 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

19 X 1978 4958 7918 2000
1A y 1A79 4A59 7A19 1500
1B z 1B7A 4B5A 7B1A 2C00
i1 0 1C30 4C3D 4400 5000
10 1 1031 4021 3B00 5400
1E 2 1E32 4E22 3C00 5500
1F 3 1F33 4F23 3000 5600
20 4 2034 5024 3E00 5700
21 L 2135 5125 3F00 5800
22 6 2236 5226 4000 5900
23 7 2337 532F 4100 5A00
24 8 2438 5428 4200 5B0OO
25 9 2539 5529 4300 5C00
26 : 2627 563F 8600 6800
27 ' 2760 575E 8700 6900
28 5 287D 5850 0300 6A13
29 + 2928 592A 8900 6B81C
2A G 2A7C SASC 7D1E 6C00
28 3 2878 5B40 TETF 6000
2C . 2C7E 5C2A 8C1D 6E0Q
2D 5 202C 5038 8000 6F 00
2E A 2E2E 5E3A 7100 7000
2F - 2F2D SFSF trapped trapped
co SPACE C020 D420 E820 €020
E3 < C10D D50D E90A c100
c2 S1 Cc208 D608 EA7F ca08
€3 S2 C309 D709 0F00 C309
Numeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

c4 . 5200 D800 772E 5200
c5 0 5300 D900 6730 5300
Ccé 00 7200 trapped 7830 7200
c7 i 4F00 DBOO 5E31 4F00
c8 2 1142 DCOO 5F32 1142
cY 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
o2} 5 4700 DF00 6235 4700
cc 6 1143 E000 6336 1143
(o)) 7 4700 E100 6437 4700
CE 8 114 E200 6538 114
CF 9 4900 E300 6639 4900
D0 + 7328 E428 7C28B 7328
D1 - 7420 ES52D 782D 7420
D2 * 752A E62A TA2A 752A
D3 / 762F E72F 792F 762F

B-16 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

SPAIN KEYBOARD

Fig.

B-9 Spain Keyboard

Alphanumeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE
00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 C 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
0B j 0B6A 3B4A 6B0A 2400
oc k 0Cé6B 3C48B 6C0B 2500
0D 1 0D6C 3D4C 6D0C 2600
[1]3 m 0E6D 3E4D 6E0D 3200
OF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
" p 1170 4150 7110 1900
12 q 127 4251 7211 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
157 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 W 1877 4857 7817 1100
B-17

19 X 1978 4958 7918 2000
1A y 1A79 4A59 7A19 1500
1B z 1B7A 4B5A 7B1A 2C00
1C 0 1C30 4C3D 4400 5D00
10 1 1031 4021 3800 5400
1E 2 1E32 4E22 3C00 5500
1F 3 1F33 4F23 3000 5600
20 4 2034 5024 3E00 5700
21 5 2135 5125 3F00 5800
22 6 2236 5226 4000 5900
23 v 2337 532F 4100 5A00
24 8 2438 5428 4200 5B00
25 9 2539 5529 4300 5C00
26 - 2627 563F 8600 6800
27 = 2760 575E 8700 6900
28 (% 287D 585D 0300 6A13
29 + 2928 592A 8900 6B1C
2A fi 2A7C 5A5C 701E 6C00
28 ° 2878 5840 7E1F 6000
2C < 2C7E 5C2A 8C1D 6E00
20 , 202C 5038 8D00 6F00
2E . 2E2E 5E3A 7100 7000
2F - 2F2D BFSF - s trapped trapped
co SPACE co020 D420 EB20 co020
c1 ,J c100 D500 E90A c100
c2 S1 c208 0608 EA7F c208
c3 52 C309 D709 0F00 C309
Numeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

ca . 5200 D800 772E 5200
c5 0 5300 D900 6730 5300
Cé 00 7200 trapped 7830 7200
c7 1 4F00 DBOO SE31 4F00
cs 2 1142 DCOO 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
cB 5 4700 DFOO0 6235 4700
cc 6 1143 E000 6336 1143
cb 7 4700 E100 6437 4700
CE 8 1141 E200 6538 114
CF 9 4900 E300 6639 4900
DO + 7328 E428 7C28 7328
D1 - 7420 ES2D 782D 742D
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F

B-18 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

SWEDEN/FINLAND KEYBOARD

Fig.

Alphanumeric Section

B-10 Sweden/Finland Keyboard

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
08 j 0B6A 3B4A 6B0A 2400
oC k 0C6B 3C48B 6C0B 2500
0D 1 0D6C 304C 6D0C 2600
0E m OE6D 3E4D 6E0D 3200
CF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
1" p 1170 4150 7110 1900
12 q 127 4251 7211 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 776 2F00
18 w 1877 4857 7817 1100

B-19

19 X 1978 4958 7918 2000
1A y 1A79 4A59 7A19 1500
18 z 1B7A 4B5A 7B1A 2C00
1C 0 1C30 4c30 4400 5000
10 1 1031 4021 3B00 5400
1E 2 1E32 4E22 3Co00 5500
1F 3 1F33 4F23 3000 5600
20 4 2034 5024 3E00 5700
21 5 2135 5125 3F00 5800
oL 6 2236 5226 4000 5900
23 7 2337 532F 4100 5A00
24 8 2438 5428 4200 5800
25 9 2539 5529 4300 5C00
26 - 2628 563F 8600 6800
27 @ 2740 5760 8700 6900
28 & 287D 585D 0300 6A13
29 - 297E 595E 8900 6B1C
2A o 2A7C SA5C 7D1E 6C00
28 a 2B78 5858 7E1F 6000
2C P 2027 S5C2A 8C10 6E00
20 V 202C 5038 8000 6F00
2E . 2E2E SE3A 7100 7000
2F - 2F2D SF5F trapped trapped
co SPACE Co20 D420 £820 €020
1 <) C100 D500 E90A €100
C2 S1 C208 D608 EA7F c208
€3 S2 C309 D709 0F00 €309
Numeric Section
RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE
c4 : 5200 D800 772E 5200
cs 0 5300 D900 6730 5300
Cé 00 7200 trapped 7830 7200
c7 1 4F00 DBOO 5E31 4F00
cs 2 1142 DCOO 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
(of:} S 4700 DFO00 6235 4700
EC 6 1143 E000 6336 1143
(o)) 7 4700 E100 6437 4700
CE 8 114 E200 6538 14
CF 9 4900 E300 6639 4900
D0 + 7328 E428B 7C28B 7328
D1 - 7420 E52D 782D 7420
D2 * 752A E62A TA2A 752A
D3 / 762F E72F 792F 762F
B-20 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

SWITZERLAND FRENCH KEYBOARD

Fig. B-11 Switzerland French Keyboard

.

Alphanumeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 001B 3000 trapped trapped
01 < 013C 313E 617F 7F00
02 a 0261 324 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
0B j 0B6A 3B4A 6B0A 2400
0C k 0Cé6B 3C4B 6C0B 2500
0D 1 0D6C 304C 6D0C 2600
OE m 0E6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
" p 1170 4150 7110 1900
12 q 127 4251 7211 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
35 A 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

B-21

19 x 1978 4958 7918 2D00
1A y 1A7A 4A5A TA1A 1500
1B z 1879 4859 7819 2C00
" 0 1C30 4C30 4400 5000
10 1 1031 4028 3800 5400
1E 2 1E32 4E22 3C00 5500
1F 3 1F33 4F2A 3000 5600
20 4 2034 505C 3E00 5700
21 5 2135 5125 3F00 5800
22 6 2236 5226 4000 5900
23 7 2337 532F 4100 5A00
24 8 2438 5428 4200 5800
25 9 2539 5529 4300 5C00
26 L 2627 563F 8600 6800
27 i 275E 5760 8700 6900
28 é 285D 587D 0300 6A13
29 § 2940 5921 8900 6B1C
2A t:! 2A7E 5A7C 701E 6C00
2B a 2B5B 5878 7E1F 6000
2C $ 2C24 5C23 8C1D 6E00
20 - 2D2C 5038 8000 6F00
2E . 2E2E 5E3A 7100 7000
2F - 2F20 SF5F trapped trapped
co SPACE Co20 D420 E820 co20
C1 c100 D50D ES0A c100
c2 $1 Cc208 D608 EA7F c208
C3 52 Cc309 D709 0F00 C309
Numeric Section
RAS KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE
c4 . 5200 D800 772E 5200
£5 0 5300 D900 6730 5300
cé 00 7200 trapped 7830 7200
c7 1 4F00 DBOO 5E31 4F00
c8 2 1142 DCOO 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
cs 5 4700 DF00 6235 4700
CC 6 1143 E000 6336 1143
cD 7 4700 E100 6437 4700
CE 8 14 E200 6538 114
CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C28 7328
D1 - 7420 E52D 782D 7420
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F
B-22 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

SWITZERLAND GERMAN KEYBOARD

Fig.

Alphanumeric Section

B-12 Switzerland German Keyboard

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 0018 3000 trapped trapped
01 < 013C 313E 6117F 7F00
02 a 0261 324 6201 1E00
03 b 0362 3342 6302 3000
04 -] 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 (] 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
0B j 0B6A 3B4A 6B0A 2400
oc k 0C6B 3C4B 6C0B 2500
0D 1 0D6C 3D4C 6D0C 2600
(1]3 m 0E6D 3E4D 6EOD 3200
OF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
1 p 1170 4150 7110 1900
12 q 127 4251 721 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
14 v 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

19 X 1978 4958 7918 2000
1A y 1B79 4A5A 7A19 150
18 z T1A7A 4859 7B1A 2C00
1C 0 1C30 4Cc3D 4400 5000
10 1 1031 4p28 3B00 540
1E 2 1E32 4E22 3C00 550
1F 3 1F33 4F2A 3000 560
20 4 2034 505C 3E00 57¢
21 5 2135 5125 3F00 §8¢
22 6 2236 5226 4000 590
23 7 2337 532F 4100 54
24 8 2438 5428 4200 58
25 9 2539 5529 4300 5C
26 . 2627 563F 8600 68C
27 E 275E 5760 8700 690
28 i 287D 585D 0300 6A13
29 § 2940 5921 8900 681
2A o 2A7C S5A7E 7D1E 6Cic
2B a 2B78B 5B58 7E1F 6000
2C S 2C24 5C23 8C10 6EVD
2D % 2D2C 5D38B 8D00 6F00
2E . 2E2E 5E3A 7100 7000
2F - 2F20 S5F5F trapped trapoed
co SPACE co20 D420 E820 coen
a1 J c100 D500 E90A c100
c2 S1 C208 D608 EA7F 208
C3 S2 C309 D709 0F00 c209
Numeric Section
RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE
c4 : 5200 D800 772E 5200
(.3 0 5300 D900 6730 5300
Ccé 00 7200 trapped 7830 7200
c7 1 4F00 DBOO 5E31 4F00
c8 2 1142 DCoo 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
cB 5 4700 DFO00 6235 4700
cc 6 1143 E000 6336 1143
(o)) 7 4700 E100 6437 4700
CE 8 14 E200 6538 14
CF 9 4900 E300 6639 4900
DO + 7328 E428B 7C28 7328
D1 - 7420 E52D 782D 742D
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F
B-24 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

" USA ASCI1 KEYBOARD

Fig. B-13 USA ASC11 Keyboard

Alphanumeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 0018 3000 trapped trapped
01 \ 015C 317C 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 £ 0766 3746 6706 2100°
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
08 j 0B6A 3B4A 6BOA 2400
oc K 0C6B 3048 6C0B 2500
00 1 0D6C 3p4C 6D0C 2600
OE m 0E6D 3E4D 6E0D 3200
OF n OF6E 3F4E 6FOE 3100
10 o 106F 404F 700F 1800
1M P 1170 4150 7110 1900
12 q 1271 4251 721 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 3 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

B-25

19 X 1978 4958 7918 2000
1A y 1A79 4A59 7A19 1500
1B z 1B7A 4B5A 7B1A 2C00
1C 0 1C30 4C5F 4400 5000
1D 1 1031 4D21 3B00 5400
1E 2 1E32 4E22 3C00 5500
1F 3 1F33 4F23 3000 5600
20 4 2034 5024 3E00 5700
21 5 2135 5125 3F00 5800
22 6 2236 5226 4000 5900
23 7 2337 5327 4100 SA00
24 8 2438 5428 4200 5B00
25 9 2539 5529 4300 5C00
26 - 262D 563D 8600 6800
27 - 275E 577E 8700 6900
28 @ 2840 5860 0300 6A13
29 [2958 5978 8900 6B1C
2A s 2A38 5A28B 7D1E 6C00
i} : 2B3A 5B2A TEF 6000
2C] 2C5D 5C7D 8C1D 6E00
20 ¥ 2D2C 5D3C 8000 6F00
2E B 2E2E SE3E 7100 7000
2F / 2F2F SF3F trapped trapped
co SPACE €020 D420 E820 C020
() o Cc10D D500 E90A c100
c2 S1 €208 D608 EA7F c208
C3 S2 €309 D709 0F00 C309
Numeric Section
RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE
C4 s 5200 D800 772E 5200
cs 0 5300 D900 6730 5300
cé 00 7200 trapped 7830 7200
€7 1 4F00 DBOO 5E31 4F00
c8 2 1142 DCOO 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
CB L 4700 DF00 6235 4700
CE 6 1143 E000 6336 1143
cD 7 4700 E100 6437 4700
CE 8 1141 E200 6538 1141
CF 9 4900 E300 6639 4900
DO + 7328 E428 7C28 7328
D1 - 7420 ES2D 782D 7420
D2 * 752A E62A TA2A 752A
D3 / 762F E72F 792F 762F
B-26 UCSD p-System Guide to the Use on M20

NATIONAL KEYBOARDS LAYOUTS AND CODES

YUGOSLAVIA KEYBOARD

Fig.

Alphanumeric Section

B-14 YUGOSLAVIA Keyboard

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMAND
CODE

00 RESET 001B 3000 trapped trapped
01 \ 013C 313E 617F 7F00
02 a 0261 3241 6201 1E00
03 b 0362 3342 6302 3000
04 c 0463 3443 6403 2E00
05 d 0564 3544 6504 2000
06 e 0665 3645 6605 1200
07 f 0766 3746 6706 2100
08 g 0867 3847 6807 2200
09 h 0968 3948 6908 2300
0A i 0A69 3A49 6A09 1700
0B 3 0B6A 3B4A 6B0A 2400
0c k 0C6B 3C4B 6C0B 2500
0D 1 0Dé6C 3D4C 6D0C 2600
0E m 0E6D 3E4D 6EOD 3200
CF n OF6E 3F4E 6F0E 3100
10 [106F 404F 700F 1800
1" p 1170 4150 7110 1900
12 q 127 4251 7211 1000
13 r 1372 4352 7312 1300
14 s 1473 4453 7413 1F00
15 t 1574 4554 7514 1400
16 u 1675 4655 7615 1600
17 v 1776 4756 7716 2F00
18 W 1877 4857 7817 1100

19 X 1978 4958 7918 2000
1A y 1A7A 4A5A 7A1A 1500
18 z 1879 4859 7819 2€00
1C 0 1C30 4C3D 4400 5000
10 1 1031 4021 3800 5400
1E 2 1E32 4E22 3C00 5500
1F 3 1F33 4F23 3000 5600
20 4 2034 5024 3E00 5700
21 5 2135 5125 3F00 5800
22 6 2236 5226 4000 5900
23 7 2337 5327 4100 5A00
24 8 2438 5428 4200 5800
25 9 2539 5529 4300 5C00
26 / 262F 563F 8600 6800
27 + 2728 572A 8700 6900
28 3 2860 5840 0300 6A13
29 < 2978 5958 8900 6B1C
2A g 2A7E 5A5E 7D1E 6C00
28 (<} 2B7C 5B5C TETF 6000
2C b3 2C70 5C5D 8C1D 6E00
20 . 2D2C 5038 8000 6F00
2E . 2E2E SE3A 7100 7000
2F - 2F2D 5F5F trapped trapped
co SPACE €020 D420 E820 €020
c1 by €100 D500 E90A c100
c2 S1 C208 D608 EA7F c208
C3 S2 €309 D709 0F00 C309
Numeric Section

RAW KEYTOP ALONE with with with
KEY SHIFT CTRL COMMANT
CODE

ca . 5200 D800 772€ 5200
C5 0 5300 D900 6730 5300
Cé 00 7200 trapped 7830 7200
c7 1 4F00 DBOO 5E31 4F00
cs 2 1142 DCOO 5F32 1142
c9 3 5100 DDOO 6033 5100
CA 4 1144 DEOO 6134 1144
CB 5 4700 DFO00 6235 4700
(oo 6 1143 E000 6336 1143
cD 7y 4700 E100 6437 4700
CE 8 1141 E200 6538 1141
CF 9 4900 E300 6639 4900
DO + 7328 E42B 7C28 7328
D1 = 742D E52D 782D 7420
D2 * 752A E62A 7A2A 752A
D3 / 762F E72F 792F 762F
B-28 UCSD p-System Guide to the Use on M20

|
M 20 PERSONAL COMPUTER

UCSD p-System

Operating System User Guide

M 20 PERSONAL COMPUTER

UCSD p-System
Operating System User Guide

PREFACE

This publication is a User Guide for the UCSD
p-System Operating System, file manager,
screen-oriented editor, and several utilities. It
describes the facilities of these major UCSD
components and provides basic instructions for
using them. It is assumed that the reader of this
manual is somewhat familiar with UCSD. The
information presented here is meant to comple-
ment and increase your knowledge of the p-Sy-
stem.

This manual describes the UCSD p-System as
developed by Softech Microsystems. It is re-
printed with the permission of Softech Microsy-
stems, Inc.

The variations between the M20 version of

UCSD and UCSD as described here, are detai-

led in the manual UCSD p-System Guide to the
pu on M20.

p-System is a trademark of Softech Microsy-
stems Inc.

UCSD and UCSD Pascal are trademarks of the
Regents of the University of California.

© Copyright 1983, by Olivetti.
All rights reserved.

© Copyright 1983, by Softech Microsystems,
Inc. San Diego, California.
All rights reserved.

REFERENCES:

UCSD p-System Program Development
User Guide
Code 3986640 M

UCSD p-System Guide to the Use on M20
Code 3986390 L

UCSD p-System FORTRAN Language
User Guide
Code 3986660 P

UCSD p-System Assembler User Guide
Code 3986650 N

UCSD p-System System Programmer's
Guide
Code 3986620 K

BASIC Reference Manual*

Personal Computing with the UCSD p-Sy-
stem**

UCSD Pascal Handbook**

* published by Softech Microsystems
Inc.

** published by Prentice-Hall and availa-
ble from bookstores.

DISTRIBUTION: General (G)
EDITION: December 1983

RELEASE: p-System IV

DISCLAIMER:

This document and the software it descri-
bes are subject to change without notice.
No warranty expressed or implied covers
their use. Neither the manufacturer nor
the seller is responsible or liable for any
consequences of their use.

PUBLICATION ISSUED BY:
Ing. C. Olivetti & C ., S.p.A.

Direzione Documentazione
77, Via Jervis - 10015 IVREA (ltaly)

UCSD p-System

Operating System User Guide

TABLE
OF

CONTENTS

INTRODUCTION. o oia o euinis 1-3
ORGANIZATION OF THIS MANUAL. ... 1-3
BACKGROUND L] - . 1-5

DESIGN PHILOSOPHY e e o e ° o v e 8 e e 1-7
Usel"'Fl'iendly ® & o & o e * 8 e s s e e 8 s e 1-8
Portability. A o TS 3-8

USING THE pSYSTEM. . ¢« ¢« ¢ ¢ ¢ ¢« ¢« s o« 1-9
MenUS and Prompts ® o o s o o e e o 8 e @ 1-9
SyStem FileS e e o o e o o e s e ° * s s 1-12

Table of Contents

p-SYSTEM CONFIGURATIONS. 1-15
THE OPERATING SYSTEM. o sis 273
INTRODUCTION . o o « « v s soa sls oo s 2-3
MENUS AND PROMPTS. . . ¢ ¢ ¢« ¢ ¢ o o & 2-3
Nlenus- © ® o * & ® * e 8 e s e o @ e o o o 2-3

Prompts....onnunnnoao.n-. 2_5
DISK*SWAPPING . « «'c ¢ o « olioiin or oie's 2-8

OPERATING SYSTEM COMMANDS. 2-9
P T R R S I SR
o 70 | ey S S PR N e T
DEEBERE o~ 0" o o via o 30 s u ¥ b s 5oy B34
e T T L DR 2-15
B o b 1 AE e A I B 2. W 2-16
L Py D A SR o T e 1
KBRS s s s v 55 ¢ 0 s 5 an oD
DR, o =+ 6 oo 5 v b sl . e SN
MEODILOr «. 0. o oo o 0 via sivnhBeinl s sie 220

RS 5o s 655 o5 s aon s a0 i e -22
U(SEEMRESEALT el <5 oiiaiin foliatomon s o o s 2-23
LR < sna s dus v b e e w o 2-24
Execution-Option Strings. 2-26

Prefixes and Libraries. 2-28
Redil‘ecticn. e ® o e e s o s e s s s . 02-29

Table of Contents

‘FlLEMANAGEMENTI..l.......ll.3-3

[NTRODUC“ON.000000'00000003-3

FILE ORGANIZATEION ' -0 ov o o sistba™e 3=9
File and Volume Names. . « « ¢« « « « « « 3-6

File Name Suffixes.o 3-12
DeViceS and v01umes ® o o o o e e o e e o 3-15
WORE BLES : s + ¢ o o s iainns o5 » 8 3-18

USING THE }“ILER e o s o s 5 2 8 s e e o @ 3-20
Filer MeniS ¢ « ¢ « o s ¢ o o o o o0 niays 320
Wild Cal'dS. ® ® 5 o o & & 0 8 e e 0 e s e 3-22

RECOVERING LOST FILES. 3-27
Duplicate Dil‘ectories. ® s e o e s e s e o 3-30

SUBSIDIARY VOLUMES. « « ¢« ¢ o ¢ o« » « 3-33
Creating and Accessing SVOLs. 3-34

Mounting and Dismounting SVOLs. . . . 3-37
Installation Information. 3-42

USER-DEFINED SERIAL DEVICES. ... 3-43

EILER FUNGTIONS . = . o o cisuis o.s ane 344
BlRd BIOCKS . ¢ « « s 0 o 5 s % 5 sus 5w ». 3789
ERRERES: o o s bt | b its i = anie e e Y
D(ate. e Shon e o EeCACR i 3-52
Elxtended List. « « ¢ o ¢ s s 00 ¢ s o« « 3-54
Fllip SWEP/LOCK . o« « ¢ 5 s s 5 078 s sa » 3=58B

Table of Contents

K(l‘unCh s edmies = 0 ¢. 9 % einEe e 4t e e 3—60
L(ist Directory. . . « « « . . e oo oo s 3-63
M(&ke @ & ® & e 8 e % s 8 8 e e s e e e e e 3—68

Plelit .~ vavahs oo viw W L5 3y e T4
RIS o it e e o v e R e R 3-76
‘ BEOMEONEL & 8 v & o ¥ ol s m et 4w SOOY
BAVE . o v v v b0 00 s a s i w0
T(ransfer. P T S R
VO . & o oo Bhamat s o=s oig oo de 303
WL . s slnlis's & 57 o s Wt te tera 3=90
| XOBING s <o S Mo 5,0 o o W kilny Lo 9D
& T R o .
|

SCREEN-ORIENTED EDITOR. 4-3
INTRODUCTION. . . « ¢« ¢ ¢ o & .

THE EDIPOR . & « ¢ . § s Ta e o h Y
IntroduCtion s s o oo ¢ 4.0 s a6 v oo n 43
The Window into the File. 4-3
The CurSOPe « o« o ¢ o ¢ ¢ o ¢ o ¢ s 0 o « 44
THE BERUS o s 505 50 v 000 805 &9
Notation Conventions. . « « « ¢« ¢ ¢« o « « 45
Editing Environment Options. 4-6
Command Hierarchy. 4-6
Repeat FaCIOPS'c s v o ¢ oo s o 0 o o v od=TF

Table of Contents

Direction. Indicator jace o s oM. 48
Uning the Editor & .ol 306 oo w48
Moving, the Cursor.. . . «aleibiie i « 4-8
F(ind and R(eplace. dhyadhe 413
Work i Biles e st N i sl sasatesiieito o o 4=115
bsing Insert. . . - « . = » o 5o bl - 416
Using Delete. T v o ¢ vs s o o o o of 410
Leaving the Editor. . « « ¢ ¢ ¢ ¢ « . . 4-18
Screen-Oriented Editor Commands. . . . 4-20
ST T R L e S
7L R RN POR s St P 18 b
PRletes « « « o « 5w o o oiiaiiwiboRiah. 4-25
BARG. ciicre o onlal o she-oed e 20
INSElAdralsel o ne no AN SRS RGIARNL IO 4231
Using Auto-Indent. 4-32
Using Filling. . . « « v v v o o v v oo 4-32
HUMD . s o s v s v o » sl JuTiN0 436
Blolumn . . " sodwid i oovnl J W F 436
MGEREIR. . -« . o otnlh W5l Vo vantuiigi. 237
Command Characters. . . « « « « « » »4-39
PROER o o 3000 0 80 5 800050 v i 0w oities R0
Ry . T
UDOOEE & . ¢ » o s 0 ¢ o 06 655 s 81
ElXitt o o's s 5% 4.5 s & & ablages it poia gl
RASLULNL o o 2 o 1o o v e iialotitnn it = 2t
ViLites. Jata i SRl IP T 7 avin o ety 4-42
Rigplace isowin fiaaneivnl siniad « 43
BROt. b0 casaiv bo WIUHDY ST SN0« 4546

Table of Contents

S(et E(nvironment. « « « « ¢« « « « . . 4-46
E(nvironment Options . « « « « « « « . 4-47
Slet Mlarker. . .-« . « s « & a8 450
Weeilys (o « o o s BRNEEE, RO il 4-52

X(Change...-.....-..-....4"53
Z(ap...................4-55

UTILITY PROGRAMS. ® ¢ o s e ¢ @ e s e o 5_3
IN TRODUCT‘ION L] L] . . 5—3

s i e PRSP s i T . « 54
Inteoduetion . « « v o s o oo o 5 s o 4
Simple Uses of PRINT. . « « ¢ ¢ ¢ ¢« ¢ ¢ & 99
Interacting with PRINT. 57
Controlling the Layout of Pages. 5-8
The Content of Pages. « « « « ¢ ¢ o « « « 59
Output MethodS. « « « ¢ ¢ ¢« ¢ s o s s o « 916
PRINT Invocation Shortcuts. 5-17
Summary of Menu Items. . . « « « ¢« « . 519
Summary of Command Lines. . . « « . « 5-21
Summary of Escape Sequences. 5-22

PRINT SPOOLER . ¢ ¢ ¢ ¢ o « s ¢ o ¢ ¢ o « 523

QUICKSTART . ¢ ¢ ¢ ¢ ¢ s ¢ 06 0 06000+ 026
Introduction. ¢« « ¢« ¢« ¢ ¢ ¢ ¢ o ¢ o 0 o s o 26
QUICKSTART Utility Operation. 5-28
System Environment Preparation. . . . 5-28

C(opy Toggle Option. « « « ¢« o o o « « 28

Table of Contents

L(ibrary Copy Toggle Option.

M(essages Toggle Option. « « « « + +
Using The QUICKSTART Utility. . . .

P(rogram Command. « « « + « « o'« o »

S(ystem Command. « « « « « s o o ¢ o »
Obsolete Environment Descriptions. . .

QUICKSTART Error Messages. « « + « «

REALCONVERT...ll.l!..'...

LIBRARYOOQ.'..C....O.C'.'
Using Library. « « ¢ « ¢ ¢ ¢ o 6 ¢ o ¢ o s

Library Example . ¢« « ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o

SETUP LI LI L I B . . o« » 0 0 LI . o

Running SETUP . o « ¢ ¢ ¢ s ¢ ¢ 00 ¢ o o

Miscellaneous Notes for SETUP.
SYSTEM.MISCINFO — Data Items. . .

Summary of Data Items. . . « « « « « . .
Sample SETUP Session. « « « « « ¢ ¢ «
Sample Terminal SetupS. « « « « « « « & &

DISKSIZE. L . e & " 0 0 . .
COPYDUPDIR' LI I T I I D R I I I
MARKDUPDIR.

RECOVER. &

e o o & ® e 2 0 0 0

5-30
5-31
5-31
5-33
5-37
5-39
5-41

5417

5-50
5-51
5-52

5-56
57
5-60
5-63
5-82
5-84
5-87

5-90
5-92
5-93

5-95

Table of Contents

APPENEREES 5. . Fllditei o 50 o lr misls A-1
A: EXECUTION ERRORS75 50 v 55 - . A-2
B: WORESULIS . o i s «opusaaidl e A-3
C: DENMICENUMBERS . .. & . . .m0, . A-4
D: ASCIE TABER. by oo sa 5 5 w19 - A-5
E: CONFIGURATION NOTES A-6
F: p-SYSTEMGEOSSARY .". A-18

CHAPTER 1

INTRODUCTION

Introduction

ORGANIZATION OF THIS MANUAL

This book is the main user reference manual for
the p-System@.

Chapter 1, "Introduction,"” presents background
information about the p-System, including a short
history of p-System development and a description
of p-System components.

Chapter 2, "The Operating System,"” describes the
function of each system command. It also presents
examples of the main system menu and gives
suggestions and procedures for interacting with the
p-System.

Chapter 3, "File Management," presents information
about file organization and file handling, as well as
descriptions of the file manager ("filer") and its
functions.

Chapter 4, "Screen-Oriented Editor,” describes the
p-System's main text editor.

Chapter 5, "Utility Programs," covers several
p-System utilities. These utilities can help you to
print files, recover lost files, configure the
p-System for a particular terminal, and so forth.

0100101:01A 1-3

Introduction

The appendices present useful reference material:

Execution Errors

I/0 Results/Errors

Device Numbers

ASCII Code

p-System Configurazion Notes
p-System Glossary

MHYO W >

1-4 0100101:01A

Introduction

BACKGROUND

In June 1979, SofTech Microsystems in San Diego,
began to license, support, maintain, and develop the
p—System. The resulting effort to build the world's
best small computer environment for executing and
developing applications has dramatically increased
the growth and use of the p-System. This universal
operating system now offers fully compatible,
integrated compilers for UCSD Pascal®,
FORTRAN-77, and BASIC. The first p-System ran
on a 16-bit microprocessor. Today, the p-System
runs on 8-bit, 16-bit, and 32-bit machines—including
the Z80, 8080/8085, 8086/8088/8087, 6502, 6809,
68000, 9900, PDP-11, LSI-11, and VAX.

The p-System began as the solution to a problem.
The University of California at San Diego needed
interactive access to a high-level language for a
computer science course. In late 1974, Kenneth L.
Bowles began directing the development of the
solution to that problem: the p-System. He played
a principal role in the early development of the
software.

In the summer of 1977, a few off-campus users
began running a version of the p-System on a
PDP-11. When a version for the 8080 and the Z80
began operating in early 1978, outside interest
increased until a description of the p-System in
Byte Magazine drew over a thousand inquiries.

0100101:01A 1-5

Introduction

As interest grew, the demand for the p-System
couldn't be met within the available resources of
the project. SofTech Microsystems was chosen to
support and develop the p-System because of its
reputation for quality, high technology, and
language design and implementations.

1-6 0100101:01A

Introduction

DESIGN PHILOSOPHY

The development team, many of whom continued
their efforts on behalf of the system at SofTech
Microsystems, decided to use stand-alone, personal
computers as the hardware foundation for the
p-System rather than large, time-sharing computers.
They chose Pascal for the programming language
because it could serve in two capacities: the
language for the course and the system software
implementation language.

The development team had three primary design
concerns:

1. The user interface must be oriented specifically
to the novice, but must be acceptable to the
expert.

2. The implementation must fit into personal,
stand-alone machines (64K bytes of memory,
standard floppy disks, and a CRT terminal).

3. The implementation must provide a portable
software environment where code files (including
the operating system) could be moved intact to
a new microcomputer. In this way, application
programs written for one microcomputer could
run on another microcomputer without
recompilation.

The current design philosophy at SofTech
Microsystems, where the p-System continues to
evolve, is bascially the same as the original
philosophy.

0100101:01A 1=

Introduction

User-Friendly

The p-System continuously identifies its current
mode and the options available to you in that
mode. This is accomplished by using menus,
displays, and prompts. You may select an option
from a menu by pressing a single-character
command. The system's displays then guide your
interactions with the computer. As you gain
more experience, you can ignore the continuous
status information—unless it is needed.

Portability

The p-System is more portable than any other
microcomputer system. It protects your software
investments without restricting hardware options.
The p-System does this by compiling programs
into p-code—rather than native machine
language—thus, allowing these code files to be
executed on any microcomputer that runs the
p-System.

1-8 0100101:01A

Introduction

USING THE p-SYSTEM

The p-System includes an operating system, filer,
editor, and several other components.. The filer,
editor, and other components are separate programs
that perform functions traditionally performed by an
operating system.

Menus and Prompts

The p-System is menu-driven; that is, it displays
a menu at the top of the screen that lists the
available commands. To use any one of these
commands, you need press only one key. Often,
prompts are displayed. They require you to enter
in a response and then press the <return> key.
You can use <backspace> if you make a mistake
while responding to a prompt.

The menus and prompts are organized in a
hierarchy (see Figure 1-1). The outermost
(Command) menu lists several items, including
E(dit. When you press 'E' to call the E(dit
option, the p-System activates the editor. To
quit using the editor, press 'Q' for Q(uit; this
will return you to the Command menu.

Figure 1-2 graphically describes the
interrelationships of the major p-System
components,

0100101:01A 1-9

Introduction

—
_ i—
3 -
— 2
H
— H
? i i
M R 5 :
i £
H) - ;
H H — k]
I
O
i —
S—— o e
R T [
H — ' ves
R 333}
EE R — i
i - 2
H
) 2
H i H
f f ‘
z L
i —— i
e ! —
[
i '— 2
§
H .
— i
=
_Ig .
| j
2
H
J L J L J
m] F
! i :
E z E

Figure 1-1. Command Hierarchy

1-10 0100101:01A

Introduction

Screen
Ornenteo

Assembly
Language
Source

Adaptable
Assembler

FORTRAN
Source
FORTRAN
Comptier

Comprter

Compuer

Executable
Program

Library
Procedures,

Y

Apphcation
Program

Tauored for newm
Display Contron

O Portabie

Figure 1-2.

Major p-System Components

0100101:01A 1-11

Introduction

System Files

The system files are disk files which contain the
bulk of the p-System.

Most of the system files reside on the system
disk, which is the disk you bootstrap with.

These files are listed as follows:

SYSTEM.PASCAL
SYSTEM.INTERP
SYSTEM.MISCINFO
SYSTEM.LIBRARY
SYSTEM.EDITOR
SYSTEM.FILER
SYSTEM.ASSMBLER

The following system files may be created on the
system disk, if required:

SYSTEM.MENU
SYSTEM.STARTUP
SYSTEM.SYNTAX

SYSTEM.PASCAL is the operating system.

SYSTEM.MISCINFO is a data file that contains
miscellaneous information about an individual
system. This includes terminal handling, memory
configurations, and miscellanecous options.

1-12 0100101:01A

Introduction

SYSTEM.EDITOR contains the current system

editor that you can call by pressing ‘E' for

E(ditor—as displayed on the Command menu. This

may be the screen-oriented editor or any other

editor that the p-System uses. To use another

editor, simply change its file name to
| SYSTEM.EDITOR after changing the original
| SYSTEM.EDITOR to something else.

SYSTEM.COMPILER may conteain a Pascal,
FORTRAN, or BASIC compiler. To call the code |
files for FORTRAN or BASIC compilers, with a

single keystroke from the Command menu, change

the name of the desired files to
SYSTEM.COMPILER.

SYSTEM.ASSMBLER is the adaptable assembler
that translates assembly language into machine
code.

You can change to a different processor by
changing the name of the appropriate assembler
to SYSTEM.ASSMBLER. The assemblers are
p-code files and are, therefore,
machine-independent. They can be used to
assemble codes for processors other than the host
processor. -The assembler needs an opcodes and
an errors file.

SYSTEM.SYNTAX contains the Pascal compiler's
error messages. It must be on the boot disk if
you want to have compile-time errors displayed in
English rather than as error numbers.

0100101:01A 1-13

Introduction

SYSTEM.LIBRARY contains previously compiled or
assembled routines that can be used by other
programs, Long integer support routines are
usually found here.

SYSTEM.STARTUP is an executable code file. If
a file called SYSTEM.STARTUP is present on the
system disk when it is bootstrapped, the p-System
executes it before the Command menu is
displayed.

SYSTEM.MENU, like SYSTEM.STARTUP, can be
any executable code file. If it is present on the
system disk, it is executed every time the
Command menu is about to be displayed. This
facility is generally used as a menu driver for
turnkey applications. (If SYSTEM.STARTUP
exists, it is executed before SYSTEM.MENU is
called for the first time.)

SYSTEM.INTERP is the assembly language
program that emulates the p-machine on the host
processor. The following are some other possible
names for these emulators, which are usually
machine-specific:

SYSTEM.PDP-11

SYSTEM.ALTOS
SYSTEM.HEATH

1-14 0100101:01A

Introduction

P-SYSTEM CONFIGURATIONS

There are two main p-System configurations. The
first configuration, which is standard, displays the
Command menu when it is booted. As already
mentioned, from this menu, you may select the
major p-System components and execute programs.

The second configuration, on the other hand, never
displays the main p-System menu. It is intended to
be bundled with application programs which display
their own menus and prompts. When this
configuration is employed, the p-System is "hidden"
underneath the application's own environment.

0100101:01A 1-15

CHAPTER 2
THE

OPERATING SYSTEM

Operating System

INTRODUCTION

The operating system is the core of the p-System.
When you first boot the p-System, the operating
system's menu appears. From here, you can select
other major p-System components or run programs.
Each time a p-System component or a program
finishes execution, you are returned to the
operating system's menu.

The operating system's menu is called the
"Command®™ menu. The items on it include the
editor, filer, compiler, and more.

This chapter describes how menus and prompts are
used by the p-System. It goes on to describe the
particular items on the Command menu.

MENUS AND PROMPTS

Menus

The following describes the menus used by the
p-System.

® The first word (title) of the menu identifies
the level of the menu, for example, Command
or Edit.

0100101:02A 2-3

Operating System

@ The sections available on a menu are located
to the right of the menu title. The letter
denoting the key that selects an option is
capitalized and set off from the rest of the
word with a parenthesis.

® The version number of the system is listed at
the end of the line in square brackets.

® A question mark on the right of a menu
indicates that there are more items on the

menu than can fit on a single line. Entering
'?' causes more of the menu to be displayed.

Some typical menus are listed as follows:

Command: E(dit, R(un, F(1le, Clomp, Ltink, Xtecute, A(ssem, D(ebug ?
Filer: G(et, S(ave, W(hat, N(ew, L(dir, Rtem, Cthng, T(rans, Df{ate,
»Edit: A(djust Clopy D(el F(ind I(nsert J(umg K{cl Mfargin P(age ?

If you enter '?" at the Command menu, the
following is displayed:

Command: H(alt, I(nitialize, Ul(ser restart, M{onitor

Selecting an option, at the Command menu,
produces one of the following results.

® The p-System allows you to execute a
program.

@ A p-System component is started; for example,
the filer or editor.

2-4 0100101:02A

Operating System

® The system alters its state, for example, as
when you select H(alt.

In general, you may exit from the system
commands by pressing 'Q' (for Q(uit). After
performing a function, you may press <{space> to
clear the screen and redisplay the menu,

Prompts

As just discussed, a menu displays options you
can select with a single keystroke; however, a
prompt requests information from you. For
example, if you want to execute a program, you
would select the X(ecute option from the
Command menu by pressing 'X'; the system will
respond with the following request—called a
"prompt":

Execute what file?

Your response to this would be to enter the
name of the program to be executed and then to
press <return>.

If you make an error while entering your
response, you can press the <backspace> key to
correct it. You can also use <delete line> to
erase your entire response. You can then resume
entering the correct response.

0100101:02A 2-5

Operating System

Another example of a prompt is when you use
the filer to list the directory of a volume.
After pressing 'F' on the Command menu to
display the F(iler menu, and then 'L' on the
F(iler menu, the following prompt will be
displayed:

Dir li1sting of wnat vol?

Your response to this prompt would be to enter
in any valid volume name and then to press
<{return>.

Often prompts require that you enter a file
name. File names (as described in Chapter 3)
often end with specific suffixes such as ".TEXT"
or ".CODE." Usually, in response to a prompt,
you should omit these suffixes. The system
programs append them automatically. To prevent
automatic appending, place a period at the end
of the file name.

When a program—such as a compiler—requires both
a source text file and a destination code file
name, the code file name may be given as '$'.
This indicates the same name as the text file
with .CODE appended instead of .TEXT.
Alternatively, you can use '$.', which is the
source file name exactly.

2-6 0100101:02A

Operating System
For example, press 'A' to select the A(ssembler.
The system then displays the following prompt:
Assemble what t1ie?
Enter YOUR.FILE and press <return>., Assuming

that YOUR.FILE.TEXT exists, the system displays
the following prompt:

Code file name?

Enter '$' and press <return>.

The preceding sequence assembles the file
YOUR.FILE.TEXT and places the resulting code
in YOUR.FILE.CODE.

You may also use device names when responding
to certain prompts. For example, the assembler
next displays this prompt:

Output file for asembled listing: (<CR>) for none)

You could enter PRINTER: and press <return>.
The printer is a device (not a file). The
assembled listing is sent there.

0100101:02A 2-7

Operating System

DISK SWAPPING

Since the operating system swaps code segments
into and out of main memory while a program is
running; and since you may change disks at various
times, the operating system has various checks to
aid you in handling disks, thus, reducing errors.

When a program requires a code segment from a
disk, but the disk containing the code segment is
no longer in the drive, the operating system
displays the following error message on the bottom
of the screen:

Need Segment SEGNAME: Put volume VOLNAME in unit U then type <space>

In the preceding example, the system couldn't find
the disk VOLNAME and waits until you press
{space>. (If you press <space> but haven't
replaced VOLNAME, the system redisplays the error
message.)

2-8 0100101:02A

Operating System

OPERATING SYSTEM COMMANDS

This section covers the items on the Command
menu in alphabetical order. Most of these items
are described in greater detail elsewhere.

In particular, the filer is described in Chapter 3 of
this manual. Also, the editor is covered in Chapter
4,

The assembler and linker are covered in a separate
assembler manual.

The compiler and debugger are covered in the
UCSD p-System Program Development User Guide.

0100101:02A 2-9

Operating System Commands: A(ssemble

A(ssemble
On the menu: A(ssem

This command starts the assembler
SYSTEM.ASSMBLER (note that there is a missing
"E"). If a work file is present, then
*SYSTEM.WRK.TEXT or the designated file is
assembled to a code file of a given machine code
(depending on which of the assemblers has been
named SYSTEM.ASSMBLER). If there is no work
file, the system displays a request for a source
file, a code file, and a listing file; the defaults
for these are *SYSTEM.WRK.TEXT,
*SYSTEM.WRK.CODE, and no listing file. If you
simply press <return> for the source file, the
assembly is aborted. Similarly, if you press <esc>
followed by <return> for the code file or listing
file, the assembler is existed.

If the assembler encounters a syntax error, it
displays the error number, and the source line in
question. It also displays an error message (if
the file *xxxx.ERRORS is present, where xxxx is
the correct processor name, that is,
Z80.ERRORS). It gives you some options:

Error ##: error message
<sp>(continue), <esc>(terminate), E(dit

You may continue the assembly by pressing
{space>; abort the assembly by pressing <escape>;
or, proceed directly to the editor to correct the
source file by pressing 'E'. In the latter case,
the system positions the cursor where the error
was detected.

2-10 0100101:02A

Operating System Commands: A(ssemble

The assembler is described in the manual
UCSD p-System Assembler User Guide.

0100101:02A 2-11

Operating System Commands: C(ompile

C(ompile
On the menu: C(omp

This command starts the compiler,
SYSTEM.COMPILER. If a work file is present,
either *SYSTEM.WRK.TEXT or the designated
text file is compiled to p-code. If there is no
work file, the system displays a request for a
source file and a code file. If you press
<return> for the code file, the default code is
*SYSTEM.WRK.CODE. If you simply press
<return> for the source file, the compilation is
aborted; and, if you press <esc> <return> for the
code file, the compilation is aborted.

Next, the compiler asks for a listing file. This
may be a disk file (such as LIST.TEXT) or
communications volume (such as PRINTER:). If
you simply press <return>, no listing file is
generated. If you press <esc> followed by
<{return>, the compilation is aborted.

If the compiler encounters a syntax error, it
displays the error number, the source line in
question, and the following menu.

Erzor &%
Line ##
Type <sp>{continue), <esc>(terminate), or 'E' to e(dit

2-12 0100101:02A

Operating System Commands: C({ompile

You may continue compilation by pressing
<{space>, abort compilation by pressing <esc>, or
proceed directly to the editor to correct the
source file by pressing 'E'. In the latter case,
the editor will position the cursor where the
error was detected.

If the file *SYSTEM.SYNTAX is present, the
Pascal compiler displays a relevant error message
instead of the error number.

The Pascal compiler is described in the manual
UCSD p-System Program Development User Guide,
and the publication UCSD Pascal Handbook.
The FORTRAN compiler is described in the manual
UCSD p-System FORTRAN Language User Guide.
The BASIC Compiler is described in the manual
BASIC Reference Manual.

0100101:02A 2-13

Operating System Commands: D{ebug

D(ebug
On the menu D(ebug

This command starts the symbolic debugger. The
debugger resides within SYSTEM.PASCAL. If
your copy of SYSTEM.PASCAL doesn’t contain
the debugger, vou need to use the Library utility
(described in the UCSD p-System Program
Development User Guide) to place
DEBUGGER.CODE into SYSTEM.PASCAL.

The symbolic debugger is a tool for debugging
compiled programs. You can call it from the
Command menu or while a program is executing
(when a break point is encountered). Using the
symbolic debugger, you may display and alter
memory, single step p-code, and do several other
useful debugging operations.

To wuse the debugger effectlively, you must be
familiar with the p-machine architecture and must
understand the p-code operators, stack usage,
variable and parameter allocation, and so on.
These topics are discussed in the UCSD p-System
System Programmer’s Guide.

For more information about the symbolic
debugger, refer to the UCSD p-System Program
Development User Guide.

2-14 0100101:02A

Operating System Commands: E(dit

E(dit
On the menu: E(dit

This command starts the editor, SYSTEM.EDITOR.
If a .TEXT work file is present, the system
indicates its availability for editing. If no work
file is present, the system displays a request for
a file name along with the option to escape from
the editor, or to enter the editor with no file
(with the intent of creating a new one).

Use the editor to create either program files or
document text files and to alter or add to
existing text files. (Refer to Chapter 4, "System
Editors," in this manual, for more information
about the editor.)

0100101:02A 2-15

Operating System Commands: F(ile

F(ile
On the menu: F(ile

This command starts the filer, SYSTEM.FILER.
The filer provides functions for managing files,
manipulating work files, and maintaining disk
directories. (Refer to Chapter 3, "File
Management," in this manual, for detailed
coverage of the filer.)

2-16 0100101:02A

Operating System Commands: H(alt

H(alt

On the menu: H{(alt

This command stops System operation. To restart
the p-System after a H(alt, you usually need to
reboot it. Some systems may automatically
reboot in response to this command.

On most single user personal computers, use of
the H(alt command is optional. It is often
sufficient to remove the system disks and turnoff
the power.

0100101:02A 2-17

Operating System Commands: I(nitialize

I(nitialize
On the menu: I(nit
This eommand reinitializes the p-System.

*SYSTEM.STARTUP is executed if present.
SYSTEM.STARTUP must be a code file; it is
executed automatically after a bootstrap or an
I(nit command. If SYSTEM.MENU is present, it is
then executed.

All run-time errors that aren't fatal cause the
system to initialize in the same manner as
I(nitialize. At initialize time, much of the
system's internal data is rebuilt, and
SYSTEM.MISCINFO is reread.

An I(nitialize command doesn't clear any /0
redirection, but run-time error reinitialization
does.

2-18 0100101:02A

Operating System Commands: L(ink

L(ink
On the menu: L(ink

This ecommand starts the Linker, SYSTEM.LINKER,
The linker allows you to link assembled machine
code routines into host compilation units
(compiled from a high-level language). It also
allows you to link native code routines together.

It is described in a separate assembler manual.

0100101:02A 2-19

Operating System Commands: M(onitor

M(onitor
On the menu: M(on

This command invokes the monitor. The monitor
helps you to create "script files" which drive the
system automatically. While in the monitor mode,
you may use the p-System in a normal manner,
but all your input is saved in the script file.
Later, you can redirect the p-System's input to
that file and your actions at the keyboard are
reproduced.

Press 'M' to start the M(onitor. The system then
displays the following menu.

Monitor: B(egin, E(nd, A(bort, S{uspend, R(esume

Press 'B' to select the B(egin option. The
system then requests a file riame where it will
store your sequence of activities, Enter the file
name and press <return>. Then R(esume and use
whatever p-System commands you wish., When
you are finished, select M(onitor again. Press 'E’
to select the E(nd option.

All your input will be saved in the file you
named. To use this file, redirect the system
input to it with the I= execution option string.

B(egin starts a monitor. If a monitor file has
already been opened, the system displays an error
message.

2-20 0100101:02A

Operating System Commands: M(onitor

E(nd terminates monitor mode and saves the
monitor file. If no monitor file is open, an error
message is displayed. (You must use S(uspend or
R(esume to return to the Command menu.)

A(bort terminates monitor mode but doésn‘t save
the monitor file. (You must use S(uspend or
R(esume to return to the Command menu.)

S(uspend turns off monitoring but doesn't close
the monitor file. In other words, you are
returned to the Command menu where you can
now enter commands without recording them.
The monitor file remains open and in a state
where you can add to it by using R(esume.

R(esume starts monitoring again and returns you
to the Command menu. If monitoring wasn't
suspended, no action occurs.

The monitor file can be either a .TEXT file or a
data file. If it is a .TEXT file, you can use the
editor to alter it, but only if the monitoring
hasn't recorded special characters that the editor
doesn't allow.

The M(onitor command itself can never be
recorded in a monitor file.

0100101:02A 2-21

Operating System Commands: R(un

R(un
On the menu: R(un

This command executes the current work file. If
there is no current code file in the work file,
the R(un command calls the compiler; and if the
compilation is successful, runs the resulting code.
If there is no work file at all, R(un calls the
compiler, which then displays a request for the
name of a text file to compile.

2-22 0100101:02A

Operating System Commands: U(ser Restart

U(ser Restart

On the menu: U(ser Restart

This command causes the last program executed
to be executed over again, with all file
parameters equal to previous values. U(ser
restart can't restart the compiler or assembler.
It is useful for multiple runs of your program.

0100101:02A 2-23

Operating System Commands: X(ecute

X(ecute
On the menu: X(ecute

This command executes a program. It displays
the following prompt.

Execute what file?

You should respond with an execution option
string. In the simplest case, this string contains
nothing but the name of a code file (program) to
be executed.

If the code file can't be found, the message:

No file <file name>

is displayed. If the program requires assembled
code which hasn't been linked, the message:

Must L(ink first

2-24 0100101:02A

Operating System Commands: X(ecute

is displayed. If the code file contains no
program (that is, all its segments are unit or
segment routines), the message:

No program in <file name>

is displayed.

If the execution option string contains only
option specifications, they are treated as
described under "Execution Option Strings" at the
end of this seetion. If the string contains both
option specifications and a code file name, the
options are handled first; and then the code file
is executed, unless one of the errors named in
the preceding paragraph occurs.

The ' X(ecute command is commonly used to call
programs that have already been compiled. You
may also use it to simply take advantage of the
execution options.

The code file must have been created with a
.CODE suffix, even if its name has subsequently
been changed.

0100101:02A 2-25

Operating System Commands: X(ecute

Execution-Option Strings

The X(ecute command allows you to specify
some options that modify the system's
environment. These include redirecting input
and output, changing the default prefix, and
changing the default library text file. These
options are available from within programs as
well as from the X(ecute command at the
keyboard.

All of these options are specified by means of
execution-option strings. An execution-option
string is a string that contains (optionally) one
file name followed by zero or more option
specifications. An option specification consists
of one or two letters followed by an equals
sign (=), possibly followed by a file name or
literal string.

The following table is a list of the possible
execution options with a summary of their uses.

L = change the default library text file
P = change the default prefix

PI = redirect program input

PO = redirect program output

I = redirect system input

O = redirect system output

Library text files are describes in the UCSD
p-System Program Development User Guide.
Prefixes are covered in this manual in Chapter 3,
“File Management™; and [/0 redirection is
explained below.

2-26 0100101:02A

Operating System Commands: X(ecute

You may use capital or lowercase letters with
execution options. Several different execution
options may be entered at a single time. They
must be separated by one or more spaces.
There may be a single space between the equal
sign (=) and the following file name or
string.

If you are executing a program, you must
specify the name of the program to be
executed before specifying any execution
options. These execution options can be
specified in any order, however.

The following items define the actual order in
which execution options are actually performed.

1. Change the prefix if the P= option is
present;

2. Change the library text file if the L= option
is present;

3. Perform the I/O redirections (if any are
present, the order of redirection options is
irrelevant).

4. Execute the file if specified.

0100101:02A 2-27

Operating System Commands: X(ecute

2-28

The execution options are described in the
following paragraphs. They may be called by
using the X(ecute command. Redirection from
within your program may be accomplished
through procedures in a unit called
COMMANDIO. See the UCSD p-System Program
Development User Guide for more information.

Prefixes and Libraries

You can change the default prefix with the
P= execution-option string. After this is
done, all file names that don't explicitly
name a volume are prefixed by the default
prefix. This is equivalent to using the
P(refix command in the filer.

To change the default prefix, press 'X' to
select X(ecute. Enter 'p=disk2' and press
<return>. The prefix is now DISK2:.

You can change the default user library text
file in the same way. The library text file
is a file that contains the names of your
libraries. When you run a program with
separately compiled units, the system
searches for them first in the files named in
the library text file and then in
*SYSTEM.LIBRARY. When the system is
booted, the default library text file is
*USERLIB.TEXT. (This is all covered in the
UCSD p-System Program Development User
Guide.)

0100101:02A

Operating System Commands: X(ecute

To change the default library text file, press
'X', then enter 'L=mylib' to make the file
MYLIB.TEXT the new default library text
file.

Enter 'prog l=mylib' to make the file
MYLIB.TEXT the new library text file and
execute the file PROG.CODE.

Redirection

The following execution-option strings control
redirection:

P1 <file name>

PI = <string>
PO = <file name>
I = <Kfile name>
I = <string>
O = <file name>

Pl= redirects program input. PI=<file name>
causes the input to a program to come from
the file named. Pl=<string> causes the input
to a program to come from the program's
scratch input buffer and appends the string
given to the scratch input buffer (scratch
input buffers are discussed in the following
paragraphs).

PO= redirects program output. PO=<file
name> causes program output to be sent to
the file named.

0100101:02A : 2-29

Operating System Commands: X(ecute

2-30

PI= overrides any previous input redirection.
Likewise, PO= overrides any previous output
redirection. Using PI= (PO=) without a file
name makes program input (output) the same
as system input (output).

= redirects system input. I=<file name>
causes system input to come from the file
named. I=<string> causes system input to
come from the system's scratch input buffer,
and appends the string to the scratch input
buffer. Scratch buffers are described in the
following paragraphs.

O= redirects system output. O=<file name>
causes system output to be sent to the file
named.

Like PI=, I= overrides any previous I=; and
like PO=, O= overrides any previous O-=.
Using I= without a file name resets system
input to CONSOLE:. Using O= without a
file name resets system output to CONSOLE:.

For PI=<file name> and I=<file name)>, the
{file name> may specify either a disk file or
an input device that sends characters. If
the file is a disk file, redirection ends at
the end of the file; and the system performs
the equivalent of an input redirection with
no file name, thus resetting input. If the
file is a device, redirection continues until
you explicitly change it. This allows you to
control the system from a remote port (such
as REMIN:).

0100101:02A

Operating System Commands: X(ecute

For PO=<file name> and O=<file name>, the
<file name> may specify either a disk file or
an output device that receives characters.
If the file is a disk file, it is named literally
as shown; that is, to make it a text file, you
must explicitly type .TEXT. Whenever output
redirection is changed, the file is closed and
locked.

For PI=<string> and I=<string>, the <string>
may be any sequence of characters enclosed
in double quotes ("). A comma within the
string indicates a carriage return. Any
double quote embedded in the string must be
pressed twice.

When input is redirected to a string, that
string is placed in a first-in-first-out queue
called the scratch input buffer. Anything
that already exits in the scratch input buffer
is read before the quoted string. The
p-System has an area of memory devoted to
its scrateh input buffer. A program has a
separate scratch input buffer of its own. If
there is nothing already in the scratech
buffer, it is as if input is taken immediately
from the string itself.

If you redirect input to come from both a
file and a scratch input buffer, the scratch
buffer is used first.

0100101:02A 2-31

Operating System Commands: X(ecute

2-32

Program redirection ends when the program
terminates. If there are still characters in
the program's scratch input buffer, they
aren't used.

System redirection ends when the system
terminates with a halt or a run-time error.
An I(nitialize command doesn't alter system
redirection. The system's scrateh input
buffer is lost when system redirection
terminates.

NOTE: The redirection applies only to
high-level I/O operations, such as WRITELN
and READLN in Pascal. Lower-level I/0
operations, such as UNITREAD and
UNITWRITE, are NOT intercepted, thus, can't
be redirected. Also, BLOCKREAD and
BLOCKWRITE aren't redirected. This means
that if you redirect a program which uses
any of these operations, they won't be
redirected.

Redirection also can't affect calls in the
following form because these calls don't
involve the standard input and output files.

REWRITE (MY_FILE, 'CONSOLE: ') ;
WRITE(MY_FILE, LOTS_OF_TEXT)

0100101:02A

Operating System Commands: X(ecute

Here is a simple example of redirecting the
system input to a string:

Execute what file? I="FL*,Q"

This causes the p-System to enter the filer
('F'), list the directory on the boot disk
('L*,"), remember that comma means <return>,
and Q(uit the filer (*Q").

To redirect program input to the file IN
(which might have been created using
M(onitor), and program output to the file
OUT, for a program called PROG.CODE;
press 'X' to call the X(ecute command and
respond:

Execute what file? PROG PI=IN PO=0OUT

To stop system input redirection, enter 'I='.

If you enter:

PO= storeme.text PI= I="fgRUNME,gqr" P=WORK2

0100101:02A 2-33

Operating System Commands: X(ecute

2-34

The p-System performs these actions:

Makes the default prefix WORK2:

Redirects program output to the file
WORK2:STOREME.TEXT

Turns off program input redirection

Follows the script "fgRUNME,qr"

f: enter the filer;

gRUNME,: G(et the work file
WORK2:RUNME.TEXT and
WORK2:RUNME.CODE;
(The comma acts as a carriage return.)

q: Q(uit the filer

r: R(un the program WORK2:RUNME.CODE;

(Note that its output has been redirected).

The following entry does the same thing.

PO= storeme.text PI= [I="fpWORK2:,gRUNME,qr"

0100101:02A

CHAPTER 3
FILE

MANAGEMENT

File Management

INTRODUCTION

This chapter covers topics which are relevant to
managing the files on your disks.

First, files and volumes are described in general.
File and volume naming conventions are covered.
Also, the different types of files and volumes are
presented.

Second, the work file is introduced. This is a
special "scratch pad" file that you may want to use
if you plan to develop programs.

The filer is then introduced. The filer is the
p-System's major file handling facility. It allows
you to view the files on a disk volume, move them
around, remove them, and so forth. Its menu is
introduced. Also, a more advanced feature called
wild cards is covered. Wild cards may be used, in
conjunction with the filer's prompts, to work with
several files at one time.

The next section describes how you can attempt to
recover any files that you accidentally loose. If
you inadvertently remove a valuable file, for
example, the procedures outlined here should assist
you in retrieving it.

Subsidiary volumes are covered next. Subsidiary
volumes allow you to have two levels of file
directory information. More files can be stored on
a disk if you use subsidiary volumes.

0100101:03A 3-3

File Management

User-defined serial volumes are then introduced. If
your p-System is set up to use these, you can take
advantage of extra serial I/O peripherals (such as
extra terminals or printers).

Finally, the filer activities are described in detail.

3-4 0100101:03A

File Management

FILE ORGANIZATION

A file is a collection of information that is stored
on a disk and referenced by a file name. Each
disk contains a directory that has the name and
location of every file that resides on it. A disk
directory may hold as many as 77 files. If you
need more on single disk (which can easily be the
case if you are using large capacity hard disks),
you can use subsidiary volumes. (Subsidiary volumes
are described later in this chapter.)

A file may contain any sort of data and be
organized in many ways. Depending on the type of
file, whieh is usually indicated by the file name
suffix, the system treats it in specific ways. For
example, your files may contain text such as letters
and memos, or they may contain executable code.
The p-System recognizes these differences.

Disks (sometimes known as "storage volumes") have
"volume names.” Sometimes disks are referenced by
"device number" (described later). The term
"volume ID" refers to a volume name or device
number of a given storage volume.

The filer is a program that you start from the
Command menu. It provides a variety of functions
that allow you to create, name and rename files,
remove them, transfer them around, print them, and
so forth.

0100101:03A 3-5

File Management

File and Volume Names

Many filer prompts require you to respond with a
file or volume name. In fact, many p-System
prompts, in general, require this. Figure 3-1
illustrates the technical syntax for file names,
and Figure 3-2 shows the syntax for volume
names.

file specification

=3
RSk
&

positive
integer

S8/

Figure 3-1. File Name Syntax

3-6 0100101:03A

File Management

0100101:03A

Figure 3-2.

Volume ID Syntax

File Management

The legal characters that you may use for file
and volume names are:

@ The alphabetic characters (A through Z)
The numerie characters (0 through 9)
Hyphen (-)

Slash (/)

Back slash (\)

Underline (_)

Period (.)

File names can be, at most, 15 characters long.
Here are some valid examples of file names:

A.FILE_NAME
MEMO.TEXT
PROGRAM/3.CODE

Here are some INCORRECT examples:

A,BAD,NAME
MORE_THAN_15_CHARS
#5*e-1{

3-8 0100101:03A

File Management

Volume names may be, at most, seven characters
in length and are followed by a colon. Here are
some correct examples:

VOLNAME:
VOL_2:
1234567:

Here are some INCORRECT volume names:

NOTCORRECT:
VOL$2:
SAY:HI:

Volumes may also be referenced by "device
number." A deviece number consists of a number
sign (#) followed by a number, usually followed
by a colon. Here are some examples:

The colon is optional unless the device number is
followed by a file name, as described below.
(The colon is required after a volume name,
however, to distinguish it from a file name.)

0100101:03A 3-9

File Management

Disk drives usually have the device numbers #4
and #5, and sometimes #9, #10, #11, #12, and
even greater numbers. (Subsidiary volumes and
"user-defined serial devices" may also use device
numbers #9 and higher.) When you refer to a
volume by device number, you are indicating the
disk which happens to be in that drive at that
time.

The asterisk (*) is shorthand for the volume ID
of the system disk. The colon (:) is shorthand
for the volume ID of the default disk (as
described below). The system disk and default
disk are equivalent unless the default prefix is
changed. You can change it with the P(refix
activity. Sometimes the system disk is also
called the boot disk.

Lowercase letters are translated to uppercase.

You may indicate the volume on which a file
resides by using the volume name or device
number (with colon) followed by the file name.
Here are some examples:

MY.DISK:MY.FILE
DISK2:MY.FILE

#4:ANOTHER.TEXT
#5: PROGRAM . CODE
*BOOT.DISK.FILE

3-10 0100101:03A

File Management

In the first two cases, the file MY.FILE is
indicated, but on two separate volumes. The
next two cases specify files on the disks in
drives #4 and #5. The final example indicates a
file on the system disk.

If you don't indicate a volume ID to go with
your file name, that file is assumed to reside on
the default disk. If, for example, the default
disk is called "MYDISK:" and you answer a file
name prompt with "A,FILE," the p-System assumes
(by "default") that you are referring to
"MYDISK:A.FILE."

When a file is being created, its name may be
followed by a size specification having the form
'[n]', where n is an integer specifying the number
of blocks that the file must occupy. For
example, A.FILE.CODE[12] is made to occupy 12
blocks.

The following items describe some special cases:

® [0] Equivalent to omitting the size
specification. The file is created in the
largest unused area.

@ [*] The file is created in the second largest

area or half the largest area, whichever is
larger.

0100101:03A 3-11

T T e

File Management

File Name Suffixes

User files are generally one of three types:
program or document text, compiled or assembled
program code, or data in a user-defined format.
The suffix of a file name usually indicates its

file type.

The following list summarizes the file suffixes:

TEXT

.BACK

.CODE

.FOTO

.BAD

.SVOL

Human readable text, formatted for
the editors.

Same as a text file. Used for backup
purposes.

Executable code, either p-code or
machine code.

A file containing one graphic screen
image.

An unmovable file covering a
physically damaged area of a disk.

A file containing a subsidiary volume.

Data files, which contain data in a user-specified
format, don't have any special suffix.

3-12

0100101:03A

File Management

Here are some example file names which use
these suffixes:

.TEXT files contain human-readable information
such as letters, poems, documents and so forth.
.BACK files are backup files for text files.
.TEXT and .BACK files contain a header page
followed by the user-written text, interspersed
with a few special codes. The header page
contains internal information for the editors.
The filer transfers the header page from disk to
disk, but never from disk to an output device
such as the PRINTER: or CONSOLE:.

All files created with a suffix of .TEXT have the
header attached to the front. They are treated
as text files throughout their lives.

The header page is two blocks long (1024 bytes),
with the remainder of the file also organized into
two-block pages. A page contains a series of
text lines, and is padded at the end with at least
one NUL character.

A.POEM.TEXT
DOCUMENT . BACK
A_PROG.CODE
FIGUREL.FOTO
BAD.00042.BAD
MYVOL.SVOL
A_DATA_FILE

0100101:03A 3-13

File Management

Each line of text is terminated with an ASCII
CR. A line may begin with a blank-compression
pair which consists of an ASCII DLE followed by
a byte whose value is 32+n, where n is the
number of characters to indent. Text lines are
typically 0 through 80 characters long to fit on
standard terminals.

.CODE files contain either compiled or assembled
code. They begin with a single block called the
segment dictionary, which contains internal
information for the operating system and linker.
Code files may also contain embedded
information. Refer to the UCSD p-System
System Programmer’s Guide for detailed description
of code files.

.FOTO files hold a graphics screen image and are
used in conjunction with Turtlegraphics.

SVOL files contain subsidiary volumes which are
discussed later in this chapter.

.BAD files are stationary files used to cover
physically damaged portions of a disk.

All of the filer functions (except G(et and S(ave)
that reference specific files require the file name
suffixes. G(et and S(ave supply these suffixes
automatically to aid you in using the work file.

3-14 0100101:03A

File Management

Devices and Volumes

A volume is any I/O device, such as the printer,
the keyboard, or a disk. A storage device
(sometimes known as a "block-structured" device)
is one that can have a directory and files,
usually a disk of some sort. A communication
device (also known as a "nonblock-structured"
device) doesn't have internal structure; it simply
produces or consumes a stream of data. For
example, the printer and console are
communication devices.

Appendix C illustrates the reserved volume names
and device numbers used to reference the
standard communication and storage devices.

The system distinguishes between storage and
communication devices. Storage devices are
usually disk drives. They contain volumes that
have a directory and files. Internally, a volume
is organized into randomly accessible, fixed-size
areas of storage called blocks, each containing
512 bytes. Files may vary in size, but are
always allocated an integral number of blocks.

Communication devices include printers,
keyboards, are remote lines. They have no
internal structure and deal with serial character
streams. Communication devices may perform
input functions, output functions, or both. (For
more details on configuring interfaces refer to the
manual UCSD p-System Guide to the Use on M20.

0100101:03A 3-15

File Management

A device or a file may be either a source of
data or a destination for data. Many of the
filer's data transfer operations apply to devices
as well as to files.

The name of a device that contains removable
volumes, such as a floppy drive, is the name of
the volume it contains at any given time. The
number of that device never changes.

The name of a disk file includes, as a prefix, the
disk on which it resides. The system always has
one default prefix—when the system is first
booted it is the system disk—so that you need
not type out the prefix every time a file is
required.

For example, SYSTEM:SAVEME.TEXT and
TABLES:SAVEME.TEXT name two different files
on two different disks (both files are called
SAVEME). These might also be specified as
#4:SAVEME.TEXT and #5:SAVEME.TEXT. If you
had changed the default prefix to TABLES:, then
entering SAVEME.TEXT would be understood to
mean TABLES:SAVEME.TEXT.

3-16 0100101:03A

File Management

0100101:03A 3-17

File Management

WORK FILES

The work file is a scratech pad for creating and
testing files. The work file is often stored
temporarily in *SYSTEM.WRK.TEXT and
*SYSTEM.WRK.CODE. These may be either newly
created files or copies of existing disk files that
have been designated as the work file.

Many system programs assume that you are working
on the work file unless you specify otherwise. You
may create the work file by designating existing
files or by creating a new file with the editor.

Modifying the work file can cause temporary copies
to be generated, which—until they are saved—are
placed in the directory under the following names,

*SYSTEM.WRK.TEXT
*SYSTEM.WRK.CODE and
*SYSTEM.LST.TEXT

You can create *SYSTEM.WRK.TEXT by leaving the
editor if you use Q(uit U(pdate. Then a successful
compile or run creates *SYSTEM.WRK.CODE. If
the compilation is successful, the R(un command
goes on to immediately execute the code. The
compiler may optionally create *SYSTEM.LST.TEXT,
a compiled listing.

Whenever the editor alters a program contained in
*SYSTEM.WRK.TEXT, the R(un command recompiles
it in order to update *SYSTEM.WRK.CODE.

3-18 0100101:03A

File Management

The filer can S(ave these files under permanent
names. You can also use it to designate a new
work file with the G(et command or to remove an
old one with the N(ew command. The filer can
also tell you W(hat your work file's name is.

0100101:03A 3-19

File Management

USING THE FILER

Filer Menus

With the Command menu displayed, press 'F' to
enter the F(iler. The system displays the
following menu.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate?

Enter '?'. The system then displays more filer
functions:

Filer: Q(uit, B(ad-blks, E(xt-dir, K(rnch, M(ake, P(refix, V(ols?

Filer: X(amine, Z(ero, On/off-line, F(lip-swap/lock

The individual filer functions are selected by
entering the letter found to the left of the
parenthesis. = For example, 'S' would call the
S(ave function.

In the filer, answering a Yes/No question with
any character other than 'Y' or 'y' constitutes a
no answer. Pressing <esc> returns you to the
main F(iler menu.

3-20 0100101:03A

File Management

Many activities display a prompt asking for a file
or volume name. We have already discussed what
file and volume names are. You can, of course,
use a volume ID as part of a file name when
responding to these prompts. In some cases,
EITHER a file or a volume may be indicated.

If you specify a file on a volume (or just a
volume) that the filer can't find, the system
displays the following message:

NAME: No such vol on-line <source>

If two or more on-line volumes have the same
name, the filer continuously displays a warning.

NOTE: Although sometimes it may be necessary
to have two volumes with the same name on-line
at the same time, try to avoid this. You can
confuse the p-System and accidentally destroy
valuable information on one of the volumes!

Whenever a filer function requests a file
specification, you may specify as many files as
desired by separating the file specifications with
commas and terminating the file list with a
<{return>. Commands operating on single file
names read file names from the file list and
operate on them until none are left.

0100101:03A 3-21

File Management

Commands operating on two file names (such as
C(hange and T(ransfer) take file specifications in
pairs and operate on each pair until only one or
none remains. If one file name remains, the filer
displays a menu requesting the second member of
the pair. If an error is detected in the list, the
remainder of the list is flushed.

Wild Cards

Wild cards allow the filer to perform its task on
several files at a time. There are three wild
card symbols: equal sign (=), question mark
(?), and dollar sign ($).

The equal sign and question mark are used to
specify subsets of the directory. The filer
performs the requested action on all files meeting
the specification.

The equal sign matches any string. For example:

=,TEXT

matches all of the following:

FILE1,TEXT
FILE2.TEXT
ANOTHER.TEXT

3-22 : 0100101:03A

File Management

If a question mark is used in place of an equal
sign, the filer requests verification before
performing the function on each file matehing the
wild card specified. For example, if you want to
R(emove some, but not all text files on a disk,
you could use '?.TEXT' and you are prompted for
each file if you want it removed.

A wild card specification must be of the form:

N

$

=<string>
?<string>
<string>=
<string>?
<string>=<string>»
<string>?<string>

The first two cases, where there is no string to
mateh, is understood to specify every file on the
volume. So pressing '=' or '?' alone causes the
filer to perform the appropriate action on every
file in the directory. Only one wild card
character can occur in a specification.

The following paragraphs describe the use of the
filer with wild cards.

0100101:03A 3-23

File Management

The following listing is the directory for volume
DISK1:.

TEMP1 6 1-Jan-83
OLD.TEXT 4 1-Jan-83
EXAMPLE1l.CODE 10 1-Jan-83
EXAMPLE2.CODE 4 1-Jan-83
TEMP2 S5 1-Jan-83
TEMP.CODE 2 1-Jan-83

With the Command menu displayed, press 'F' to
call the F(iler. Then press 'R' to use the
R(emove option. The system will display the
following prompt:

Remove what file?

Enter 'TEMP=' press <return>.

The system then displays the following listing:

DISK1:TEMP2 removed
DISK1:TEMP.CODE removed
Update directory?

To verify and complete this operation, press 'Y'.
To stop the operation, press 'N'. If you press
'N', the files won't be removed.

3-24 0100101:03A

File Management

Using the same directory to list a specified set
of files, press 'F' (shown on the Command menu)
and then press 'L' to use the L(ist option. The
system will display the following prompt:

Dir listing of what vol ?

Enter '=TEXT' and press <return>. The system
will display the following listing:

OLD.TEXT 4 1-Jan-83
NEW.TEXT 12 1-Jan-83

The subset-specifying strings may not overlap.
For example, EXAMPLE.C=CODE wouldn't specify
the file EXAMPLE.CODE, whereas EXA=CODE
would be a valid specification.

In any file name pair, you may use the character
'$' to signify the same file name as the first
name, perhaps with a different volume ID or size
specification.

Press 'F' (Command menu) and then press 'T' to
select the T(ransfer option. The system will
display the following prompt:

Transfer what file?

0100101:03A 3-25

File Management

Enter '#5:RE.USE.TEXT,*$' and press <return>.
The system now transfers the file RE.USE.TEXT
on device #5 (a disk drive) to the system disk
(*), which is also device #4. The name won't
be changed. The system will display the
following message:

WORKSET:RE.USE.TEXT->SYSTEM:RE_USE.TEXT

3-26 0100101:03A

File Management

RECOVERING LOST FILES

When a file is removed, it is actually removed from
the directory, not the disk. The information that
it contained remains on the disk until another file
is written over it (which could happen at any time,
since the filer considers it usable space).

If a file is accidentally removed, be careful not to
perform any actions (whether from the system or
from your program) that write to the disk, since
they might write over the lost file. The K(runch
function is virtually certain to do this; avoid it.

With the Command menu displayed, press 'F' to call
the F(iler and then press 'E' to use the E(xtended
list function. The E(xtended list function will
display the names of files in the directory and any
unused blocks that may lave once contained files.
Sometimes, by looking at the size of unused areas
and their location in the directory, you can tell
where the lost file was located.

With the F(iler menu displayed, press 'M' to use the
M(ake function. You should then enter a file name
and the size in blocks (enclosed in brackets) of the
lost file.

To recover a lost file with the M(ake function, the
size specification should match the size of the file
that was lost. If you remember the size, or if the
lost file took up all the space between two files
that are still listed in the directory, recovery is
easy.

0100101:03A 3-27

File Management

The M(ake function creates a file (of the size that
you specify) at the beginning of the first available
location on the disk which is at least that large.
To fill up any unused (and unwanted) space that
precedes the location of the lost file, use the
M(ake function to create dummy files. (Later, you
may remove these "filler" files.)

The following is an example of a listing made using
the E(xtend list function:

WORK :

SYSTEM.MISCINFO 1 1-Jan-83 6 512 Datafile
< UNUSED > 1 7
SYSTEM.SYNTAX 14 1-Jan-83 8 512 Datafile
REM.WRK.CODE 4 1-Jan-83 22 512 Codefile
< UNUSED > 75 26
MYFILE.TEXT 20 1-Jan-83 101 512 Textfile
< UNUSED > 373 121

4/4 files<listed/in-dir>, 45 blocks used, 449 unused, 373 in largest

MYFILE.CODE was four blocks long and was
located just after MYFILE.TEXT. To create it,
press 'M' (F(iler menu) to use the M(ake function
and enter FILLER[75]. This procedure fills up the
75 blocks of unused space on the disk. Next, using
the M(ake function, create a file with the following
specifications: MYFILE.CODE[4]. MYFILE.CODE is
created (once again) immediately following
MYFILE.TEXT. Finally, use the R(emove funection
to delete FILLER from the directory.

3-28 0100101:03A

File Management

The following extended listing results from this
procedure.

WORK :

SYSTEM.MISCINFO 1 1-Jan-83 6 512 Datafile
< UNUSED > 1 7

SYSTEM.SYNTAX 14 1-Jan-83 8 512 Datafile
REM.WRK.CODE 4 1-Jan-83 22 512 Codefile
< UNUSED > 75 26

MYFILE.TEXT 20 1-Jan-83 101 512 Textfile
MYFILE.CODE 4 1-Jan-83) 512 Codefile

5/5 files<listed/in-dir>, 49 blocks used, 445 unused, 369 in largest

NOTE: To X(ecute a code file, you must have
created it with a .CODE suffix. (Later, you may
change the code file name.) If you lose a code
file that doesn't have a .CODE suffix (for example,
SYSTEM.FILER) you must recreate the file with a
.CODE suffix (for example, FILER.CODE) and then
again change the name back to SYSTEM.FILER. If
you don't do this, the recreated file won't be
executable.

The RECOVER utility, described in Chapter 5, can
help you find files when you can't remember or
determine where they were located on the disk.
RECOVER scans the directory for entries that look
valid. If that search doesn't yield the desired file,
RECOVER attempts to read the entire disk looking
for areas that resemble files and asks you if you
want then recreated.

Another alternative is to use the PATCH utility to
manually search through the disk. Once the file
has been found, use M(ake to create the proper
directory.

0100101:03A 3-29

File Management

If a directory entry seems erroneous or confusing,
you may use the PATCH utility to examine the
exact contents of the directory. (Refer to the
UCSD p-System Program Development User Guide.)

Duplicate Directories

A duplicate directory can assist you in recovering
from the situation where the main directory has
been destroyed. The main directory spans blocks
2 to 5 on a disk. If a duplicate directory is
present, it spans blocks 6 to 9. Every time the
directory is altered, the duplicate directory is
updated as well, thus providing a convenient
backup. (A duplicate directory won't help you if
you accidentally remove a file since the file is
removed from both directories at the same time.)

If a directory is corrupted on a disk that has a
duplicate directory, you may use the
COPYDUPDIR utility to simply move the
duplicate directory to the location of the
standard disk directory. Sometimes this is all
that is required to recover a disk.

There are two ways to place duplicate directories
on a disk. The first is to instruct the Z(ero
function to do this when you are initializing a
disk's directory. When the prompt 'Duplicate
dir?' appears, press 'Y' for yes. This prompt
also appears in the M(ake function when you are
creating subsidiary volumes. In this case, you
can create a duplicate directory for the
subsidiary volume if you wish.

3-30 0100101:03A

File Management

If you are already using a disk that contains only
one directory, you can use the MARKDUPDIR
utility to create a duplicate directory (without
having the zero the volume). However, be
careful when using this utility. Blocks six to
nine of the disk—the location of the duplicate
directory—must be unused; if not, file information
will be lost.

If a directory is lost, and no duplicate directory
was present, use the RECOVER utility as
previously described.

CAUTION: You will destroy the directory if you
use the F(iler E(xtended list or L(ist functions
and specify an optional output file as a disk
volume without a file name. (The listing is
written on top of the directory.)

EXAMPLE:

The L(ist directory prompts:

Dir listing of what vol ?

Response:

MYDISK:, MYDISK: <return>

Response:

MYDISK:,: <return>

0100101:03A 3-31

File Management

Either of these responses cause the first few
blocks (aproximately 6) of MYDISK: to be
overwritten with a listing of the directory of
MYDISK:.

Response:

MYDISK:, DISK2:

This causes the directory of DISK2: to be
overwritten.

In the latter case, you must use the disk
recovery methods already desribed. In the first
two cases, recovery isn't so difficult, even if
there wasn't a duplicate directory, since the
MYDISK: directory has been overwritten with
what is essentially a copy of itself.

First, get a copy of the directory listing of
MYDISK:. (If MYDISK: was the system disk, you
must boot another system.) Use the filer to
T(ransfer 'MYDISK:' to the printer, like this:

Transfer what file? MYDISK:, PRINTER:

Generate hard copy of the directory and then use
the filer to Z(ero MYDISK:. The Z(ero function
won't alter the contents of MYDISK: only the
directory itself. Now use the M(ake function to
remake all of the files on the disk (as described
in the preceding paragraphs).

3-32 0100101:03A

File Management

SUBSIDIARY VOLUMES

The purpose of subsidiary volumes is to provide two
levels of directory hierarchy and to expand the
p-System's ability to use large storage devices such
as Winchester disk drives. Currently, p-System disk
volumes contain a 4-block directory located in
blocks 2 through 5. The rest of the disk contains
the actual files described in the directory. The
size of the directory allows for a maximum of 77
files to reside on the corresponding disk image.

Subsidiary volumes are virtual disk images that
actually reside within a standard p-System file.
The disk that contains one of these files is called
the principal volume. Each subsidiary volume may
contain up to 77 files.

A subsidiary volume appears in the directory of the
principal volume as a file. Subsidiary volume file
names can have a maximum of seven characters and
must be followed by the suffix ".SVOL." The
following listing is an example.

MAIL.SVOL
TESTS.1.SVOL
DOC_B.SVOL

0100101:03A 3-33

File Management

The subsidiary volume disk image resides within the
actual .SVOL file. The directory format and file
formats are the same as for any other p-System
disk volume. The volume name of the subsidiary
volume is that portion of the corresponding file
name that precedes the ".SVOL." For example, the
three preceding files would contain the following
subsidiary volumes:

MAIL:
TESTS.1:
DOC_B:

Creating and Accessing SVOLs

To create a subsidiary volume, use the filer
M(ake function and the file name suffix, .SVOL.
As with any other file the M(ake function
creates, the subsidiary volume occupies:

1. All of the largest contiguous disk area if
created as follows:

Make what file? DOCS.SVOL

2. Half of the largest area or all of the second

largest area, whichever is larger, if created as
follows:

Make what file? DOCS.SVOLI(*)

3-34 0100101:03A

File Management

3. A specified number of blocks, in the first area

large enough to hold that many blocks, if
created as in the following examples:

Make what file? DOCS.SVOL[200]
Make what file? DOCS.SVOL[1500]

An .SVOL file must be made at least 11 blocks
long.

After you enter the .SVOL file name, the system
sometimes displays this prompt:

Zero subsidiary volume directory?

If you respond with a 'Y', the directory of the
new subsidiary volume is zeroed. If you press an
'N', the directory isn't zeroed; and any files that
may have existed on a previous subsidiary volume
in the same location reappear within the
directory. In both cases, the number of blocks
indicated within tne directory always correspond
to the size of the actual .SVOL file. If this
prompt isn't displayed, then there wasn't a
previous subsidiary volume directory where you
are creating the current .SVOL file. In this
case, the new subsidiary volume is automatically
zeroed.

0100101:03A 3-35

File Management

The next prompt which is almost always displayed
is:

Duplicate dir?

You should respond with 'Y' if you want a
duplicate directory to be maintained on the
subsidiary volume, and 'N' otherwise. Duplicate
directories were covered earlier under
"Recovering Lost Files."

Subsidiary volumes may not be nested. That is,
an .SVOL file may not be created within another
SVOL file.

When you create a subsidiary volume, it is
automatically mounted unless the maximum number
of subsidiary volumes has already been mounted.
(Mounting and dismounting of subsidiary volumes
is described in the next section.) You may then
access and use it like any other p-System volume.
The filer funetion, V(olumes, then displays a
listing which indicates that the new volume is
on-line and shows its corresponding device
number; for example, #13:.

You may use either volume name or the device
number when referencing the subsidiary volume.
You may now place files on the new subsidiary
volume, and all of the applicable file activities
may reference it.

3-36 0100101:03A

File Management

Mounting and Dismounting SVOLs

A mounted subsidiary volume is subtly different
from an on-line subsidiary volume.

To identify a subsidiary volume as mounted
means that the p-System knows the volume
exists and sets aside a device number for it;
for example, #13:. You must mount a
subsidiary volume before you can use it. While
it is mounted, only that specific subsidiary
volume corresponds to that device number,

A subsidiary volume stays mounted until you
dismount it. Once mounted, it is on-line any
time its principal volume is in the disk drive.
It is off-line when the principal volume has
been removed from the disk drive.

CAUTION: There is a danger of confusing the
system if two principal volumes each contain a
subsidiary volume in the same location with the
same name. This might easily be the case
where backup disks are used. If these
principal volumes are swapped in and out of
the same drive, and the similar subsidiary
volumes are accessed, the filer may become
confused in the same way that it can when any
two on-line volumes have the same name.

0100101:03A 3-37

File Management

CAUTION: If you write programs, be careful
when using low-level I/0 routines (like
UNITWRITE) with subsidiary volumes. If you
remove a principal volume from a disk drive
and insert another disk, these low-level
routines have no way of knowing that the
subsidiary volumes that were mounted on the
original disk are no longer present. Under
these circumstances, doing a UNITWRITE to
absent subsidiary volumes will overwrite data
on the disk presently occupying the disk drive.

When you boot the p-System, all of the on-line
disks are searched for .SVOL files. The
corresponding subsidiary volumes are then
mounted. The same process occurs whenever
the p-System is initialized (by the I(nitialize
command or after an execution error).

The booting or initializing process mounts as
many subsidiary volumes as it finds as long as
there is room in the p-System unit table. If
the unit table becomes full, no more subsidiary
volumes are mounted; and no warning is given.
(The maximum number of subsidiary volumes is
discussed a little later.)

After booting or initializing, if you place a
new physical disk on-line, you must manually
mount any subsidiary volumes contained on it if
you want to access them.

3-38 0100101:03A

File Management

To mount or dismount subsidiary volumes, use
the O(n/off-line function. From the main F(iler
menu, press 'O'. The system will display the
following menu:

Subsidiary Volume: M(ount, D(ismount, C(lear

Press 'M'. The system display this prompt:

Mount what vol ?

To dismount a subsidiary volume, press 'D’.
The system displays this prompt:

Dismount what vol ?

Suppose that a principal volume, P_VOL:,
contains the following files:

P_VOL:
FILE]1.TEXT
FILE1l.CODE
VOL1.SVOL
FILE2.TEXT
FILE2.CODE
DOC1.SVOL
=FUN-,SVOL

0100101:03A 3-39

File Management

To mount subsidiary volumes on P_VOL:, you
can respond to the mount prompt with the file
name, as in the following examples:

Mount what volume? VOL1.SVOL<return>
Mount what vol ? VOL1.SVOL,-FUN-.SVOL<return>
Mount what vol ? P_VOL:=<return>

Mount what vol ? #5:=<return>

The first example mounts VOLI1:, the second
mounts VOL1: and -FUN-:, the third mounts all
three subsidiary volumes on P_VOL:, and the
fourth example mounts all subsidiary volumes on
the disk in drive #5:.

To dismount any of these volumes, you can
respond to the dismount prompt with the
VOLUME ID as in the following examples:

Dismount what vol 2 #14:
Dismount what vol ? VOLl:<return>

Dismount what vol ? VOLl:, DOCl:, FUN:«return>

The first example dismounts the subsidiary
volume associated with device number #14.
The second example dismounts VOL1:, and the
third example dismounts three subsidiary
volumes.

3-40 0100101:03A

File Management

The other item on the O(n/off-line menu is
C(lear. When this is selected, all subsidiary
volumes are dismounted.

There is a maximum number of subsidiary
volumes that you may mount at one time. You
can set this number, which is subject to
memory constraints and tradeoffs. The
maximum number of subsidiary volumes is a
field in SYSTEM.MISCINFO and is configured
using the SETUP utility,

NOTE: If you C(hange either the name of a
subsidiary volume or the name of the
corresponding .SVOL file, it is a good idea to
change them both to the same name. For
example, if you want to change either of
these:

MYVOL.SVOL
MYVOL:

You should C(hange both of them in the same
way:

NEWNAME.SVOL
NEWNAME:

If you don't do this, the .SVOL file and its
corresponding subsidiary volume won't have the
same name which might be confusing.

0100101:03A 3-41

File Management

NOTE: If you want to T(ransfer one subsidiary
volume to another, use the file-by-file method:

Transfer what file? SVOLl:=
To where? SVOL2:$

It isn't a good idea to do a volume-to-volume
T(ransfer.

NOTE: If you need to extend the size of a
subsidiary volume, do not use the DISKSIZE
utility. You should M{ake another subsidiary
volume the size you want and transfer the files
from the old subsidiary volume to the new one.

Installation Information

It is very simple to install the subsidiary volume
facility if you use the SETUP utility to set MAX
NUMBER OF SUBSIDIARY VOLS to the smallest
convenient value. This will be the maximum
number of subsidiary volumes that are allowed to
be mounted at one time. (Each additional
subsidiary volume requires a few extra bytes
within the p-System's unit table. This is why
you should keep this number as small as possible.)

When you have set this field, the subsidiary
volume facility is available.

3-42 0100101:03A

File Management

USER-DEFINED SERIAL DEVICES

The user-defined serial device facility allows you to
take advantage of special serial I/O hardware
capabilities. You can use this facility, along with
the standard serial I/O devices (CONSOLE:,
REMIN:, and REMOUT:), on some computers.

You may have up to 16 user-defined serial devices,
in addition to a printer, a console and a remote
line. User-defined serial devices may include
additional printers, additional consoles,
communication lines between users in a multi-user
environment, and so on.

This feature isn't available with the adaptable
system BIOS.

You can use SETUP, described in Chapter 5, to
specify the number of user-defined serial devices
that you will have,

0100101:03A 3-43

L

File Management: B(ad Blocks

FILER FUNCTIONS

This section describes filer functions and gives
examples of their use. Functions are listed in
alphabetical order with each new function beginning
on a new page.

3-44 0100101:03A

File Management: B(ad Blocks

B(ad Blocks
On the menu: B(ad-blks

This function reads a volume's data blocks to
detect areas that are apparently bad for some
physical reason (magnetic damage, fingerprints,
warping, dirt, and so on).

This function requires you to enter a volume ID.
The specified volume must be on-line.

Prompt:

Bad block scan of what vol?

Response:

<volume ID>

Prompt:

Scan for 320 blocks ? <y/n>

Enter 'Y' for yes to scan for the entire length
of the disk. To check a smaller portion of
the disk, press 'N'. The system will then
display a prompt requesting the number of
blocks which the filer should scan.

0100101:03A 3-45

File Management: B(ad Blocks

The system checks each block on the indicated
volume for errors and lists the number of each
bad block. Bad blocks can sometimes be fixed or
marked (see X(amine).

3-46 0100101:03A

File Management: C(hange

C(hange
On the Menu: C(hng
This function changes file or volume names.

C(hange requires two names. The first name
specifies the file or volume name to be changed,
the second entry specifies the name it is to be
changed to. The first entry is separated from
the second entry by either a <return> or a
comma (,). Any volume name information in
the second file specification is ignored since only
the name in the volume directory is changed.
Size specification information is also ignored.

The following example shows how to change file
or volume names. The example file F5.TEXT
resides on the volume occupying device #5:

Prompt:

C(hange what file?

Response:

#5:F5.TEXT, NEWNAME

0100101:03A 3-417

File Management: C(hange

The preceding procedure changes the name in the
directory from 'F5.TEXT' to 'NEWNAME'. File
types are originally determined by the file name,
however, the C(hange function doesn't affect the
file type. In the above case, NEWNAME is still
a text file.

On the other hand, a response of

#5:F5=,NEWNAME=

preserves the .TEXT suffix.

Wild card specifications are legal in the C(hange
function. If you use a wild card character in
the first file specification, then you must use a
wild card in the second file specification. The
subset-specifying strings in the first file
specification are replaced by the analogous
strings (called replacement strings) given in the
second file specification.

The filer won't change the file name if the
change would make the new file name too long;
that is, more than 15 characters.

3-48 0100101:03A

File Management: C(hange

EXAMPLE:

Given a directory of example disk
containing the following files:

EXAMPLE.TEXT
MAIL.TEXT
MAIL.CODE
MAKE.TEXT

Prompt:

DISK1:MA=TEXT<return>

Prompt:
Change to what?

XX=WHAT

This causes the. filer to report:

DISK1:MAIL.TEXT --> XXIL.WHAT
DISK1:MAKE.TEXT --> XXKE.WHAT

0100101:03A

DISK1:,

3-49

File Management: C(hange

The subset-specifying strings may be empty, as
may the replacement strings. The filer considers
the file specification equal sign (=) (where both
subset-specifying strings are empty) to specify
every file on the disk. Responding to the
C(hange prompt with '=,Z=Z' causes every file
name on the disk to have a 'Z' added at the
front and back. Responding to the prompt with
'Z=Z,=' replaces each terminal and initial 'Z' with
nothing.

EXAMPLE:

Given the file names:

THIS.TEXT
THAT.TEXT

Prompt:

Change what file?

Response:

The result would be to change 'THIS.TEXT' to
'HIS.TEX', and 'THAT.TEXT' to 'HAT.TEX".

3-50 0100101:03A

File Management: C(hange

You may also change the volume name by
specifying a volume ID to be changed and a new
volume ID.

EXAMPLE:

Prompt:

Change what file?

Response:

DISK1:,DISK2:

Causes the filer to report:

DISK1: --> DI1SK2:

0100101:03A 3-51

File Management: D(ate

D(ate
On the menu: D(ate

This function lists the current p-System date and
enables you to change it if you want.

Prompt: Date Set:<1.,.31>-<JAN..DEC>-<00..99>
Today is 1-Jan-83
New date?

You may enter the correct date in the format
given. After pressing <return>, the new date is
displayed. Pressing only a return doesn't affect
the current date. The hyphens are delimiters for
the day, month, and year fields; allowing you to
affect only one or two of these fields.

For example, you can change only the year by
entering '--83', only the month by entering
'- Jan', and so on. You can spell out the name
of the month entirely, but the filer will truncate
it.

The most common input is a single number, which
is interpreted as a new day. For example, if the
date shown is the 1st of January, and today is
the 2nd, you enter '2<return>'; this procedure
changes the date to the 2nd of January. The
day-month-year order is required.

3-52 0100101:03A

File Management: D(ate

The p-System's date is associated with any files
which are created or modified during the current
session. Thus, the individual files may have
different dates. These dates are displayed when
the directory is listed.

The p-System's date is saved in the directory of
the system disk. The date remains the same
until you change it by using the D(ate function.

NOTE: Some p-System application program are
designed to examine and/or change the system
date, either from your input, as with the filer, or
automatically from battery operated clocks which
are available with some machines.

0100101:03A 3-53

File Management: E(xtended List

E(xtended List
On the menu: E(xt-dir

This function lists the directory in more detail
than the L(dir function. (See L(dir for more
information.)

All files are listed with their block length, last
modification date, the starting block address, the
number of bytes in the last block of the file, and
the file type. The unused areas are also
displayed. All wild card options and prompts are
used in the same way as the L(dir function.

Since this funetion shows the complete layout of
files and unused space on the disk, it is useful in
conjunction with the M(ake function. (You can
see where files may be created.)

Often, an E(xtended list is too long to fit on one
screen. In this case, the filer displays one full
sereen and then prompts:

Type <space> to continue

You should press <space> to list the rest of the
directory. Press <esc> to abort the listing.

3-54 0100101:03A

File Management: E(xtended List

EXAMPLE:

Here is a sample extended listing:

MYDISK:

FILERDOC2.TEXT 28 1-Jan-83 6 512 Textfile
MEMO.CODE 18 1-Jan-83 34 512 Codefile
<UNUSED> 10 52

SCHEDULE 4 1-Jan-83 62 512 Datafile
HYTYPER.CODE 12 1-Jan-83 66 512 Codefile
STASIS.TEXT 8 1-Jan-83 78 512 Textfile
LETTER1.TEXT 18 1-Jan-83 86 512 Textfile
ASSEMDOC.TEXT 20 1-Jan-83 104 512 Textfile
FILERDOCI.TEXT 24 1-Jan-83 124 512 Textfile
<UNUSED> 200 148

STASIS.CODE 6 1-Jan-83 348 512 Codefile
<UNUSED> 154 354

10/10 files <listed/in-dir>, 138 blocks used, 356 unused, 200 in largest

0100101:03A 3-55

File Management: F(lip swap/lock

F(lip Swap/Lock
On the menu: F(lip swap/lock

This function can facilitate the use of the filer
on systems that have enough memory.

The Pascal code that makes up the filer is
divided into several segments. Not all of the
segments are needed in main memory at the same
time. By removing unneccessary segments from
memory, more memory space is available for the
filer to perferm its tasks. For example, a
transfer is much more efficient when there is a
large buffer area available in memory.
Furthermore, on some machines, there just isn't
enough memory space to contain the entire filer.

However, allowing the filer to have nonresident
segments requires that the disk containing
SYSTEM.FILER be accessed whenever a
nonresident segment is needed. This can be
inconvenient on two-drive systems. It is more
convenient to do the following: Enter the filer,
remove the system disk, if desired, and perform
any combination of L(isting, disk-to-disk
T(ransferring, K(runching, and so on, without
having to replace the system disk at frequent
intervals.

3-56 0100101:03A

File Management: F(lip swap/lock

In the first mode, the filer segments are
memswapped; and in the second mode, they are
memlocked. The F(lip swap/lock function allows
you to choose the mode the filer will use. Upon
entering the filer, the initial state is always the
memswapped state. Pressing 'F' acts as a toggle
between the memswapped and memlocked states.

For example, if you enter the filer and press 'F'
twice, the system displays two messages similar
to these:

Filer segments memlocked (9845 words]
Filer segments swappable [13918 words]

The number of available 16-bit words is given so
that you will have an idea of how much space is
left for the filer to perform its functions. There
is usually less space available in the memlocked
mode. If the machine doesn't have enough space
to memlock the filer segments, you receive &a
message indicating so. (If there aren't at least
1500 extra words available, the filer won't allow
the memlock option.)

0100101:03A 3-57

File Management: G(et

G(et
On the menu: G(et

This function designates a text and/or code file
as the work file.

The entire file specification isn't necessary. If
the volume ID isn't given, the default disk is
assumed. Wild cards aren't allowed, and the size
specification option is ignored.

EXAMPLE:

Given the directory:

MEMO.TEXT
PRINT.CODE
PROG.TEXT
PROG.CODE

Prompt:

Get what file?

Response:

PROG

3-58 0100101:03A

File Management: G(et

The filer responds with the following message
because both text and code files exist.

Text & Code file loaded

If you enter 'PROG.TEXT' or 'PROG.CODE!, the
result is the same. Both text and code versions
are loaded. If only one of the versions exists, as
in the case of MEMO, then that version is
loaded, regardless of whether you requested text
or code. For example, entering '"MEMO,CODE' in
response to the prompt generates the message:
'Text file loaded'.

Using the compiler, editor, assembler on a work
file may cause the files SYSTEM.WRK.TEXT
and/or SYSTEM.WRK.CODE to be created as part
of the work file. The SYSTEM.WRK files
disappear when you use the S(ave function. If
you reboot the p-System before using the S(ave
function, the p-System forgets the name of the
work file. In this case, the p-System doesn't
know what files the SYSTEM.WRK files were
derived from.

0100101:03A 3-59

File Management: K(runch

K(runch
On the menu: K(rneh

This function moves the files on a volume
together so that the unused space is consolidated
into one large area.

K(runch first displays a prompt asking for the
name of a volume. It then asks if it should
move the files from the end of the volume
toward the beginning. If you answer yes to this
question, K(runch leaves all files at the front of
the volume, and one large unused area at the
end. If you answer no to this prompt, K(runch
asks at which block the file movement should
start. Doing a K(runch from & block in the
middle of the volume leaves a large unused area
in the middle of the volume, with files clustered
toward either end (as space permits). Doing a
K(runch from the beginning of a volume leaves
the files at the end and the unused space at the

beginning.

As each file is moved, its name is displayed on
the console.

If the volume contains a bad block that hasn't
been marked (see B(ad and X(amine), K(runch may
move a valuable file on top of it. That file is
then beyond recovery. You should scan for bad
blocks with the B(ad function before using the
K(runch function unless all files are also backed
up on a different volume.

3-60 0100101:03A

File Management: K(runch

If the K(runech funection must move
SYSTEM.PASCAL or SYSTEM.FILER on the
system disk, it then displays a prompt which asks
you to reboot the system.

EXAMPLE:

Prompt:

Crunch what vol?

Response:

MYDISK:
If MYDISK: is on-line, K(runch displays a prompt
similar to this:
From end of disk, block 320 ? (y/m)
The "320" indicates the last block on your volume
and may be different for your disks. To start
the K(runch, from this location, press 'Y'. To

start the K(runch at another location, press 'N'
and this is displayed:

Starting at block ¢ ?

Enter the block number at which the K(runch
should begin.

0100101:03A 3-61

File Management: K(runch

The contents of subsidiary volumes can be
K(runched just like any other volume.

3-62 0100101:03A

File Management: L(ist Directory

L(ist Directory
On the menu: L(dir

This function lists the files in a disk directory or
some subset of them. Usually, the listing is
displayed on the console, but you can direct it to
a file or to a communications device, such as
PRINTER:,

Each file name is followed by the file length, in
blocks (a block is 512 bytes), and the date of its
last modification.

When you select L(ist directory, this prompt is
displayed:

Dir listing of what vol?

You can respond to this with a storage volume
name. The directory of this volume is then
listed. If you want, you can follow the volume
name with a file name or wild card expression
for multiple file names. In this case, the single
file or the subset of the directory indicated by
the wild card expression is listed.

You can, if you want, send the listing to a
communications volume (such as PRINTER:) or a
file (such as LIST.TEXT). To do this, use a
comma after you indicate the volume to be
listed. Following the comma, enter the
destination for the listing.

0100101:03A 3-63

File Management: L(ist Directory

If the directory listed is too long to fit on one
screen, the filer lists as much of it as it can and
then displays the following prompt:

Type <space> to continue

Pressing <space> causes the rest of the directory
to be listed; pressing <esc> halts any further
listing.

3-64 0100101:03A

File Management: L(ist Directory

EXAMPLE:

To list MYDISK:, select L(ist directory and
respond like this:

Prompt:

Dir listing of what vol?
Response:

MYDISK:

Here is the listing of MYDISK:

Dir listing of what vol?

F1LER1.TEXT 38 1-Jan-83
PRINT.CODE 5 1-Jan-83
FILE2.TEXT 22 1-Jan-83
MEMO.TEXT 30 1-Jan-83
FILE3.TEXT 25 1-Jan-83

5/5 files <listed/in-dir>, 120 blocks used, 100 unused, 100 in largest

The bottom line of the display informs you that:
5 files out of 5 files on the disk have been
listed, 120 blocks have been used, 100 blocks
remain unused, and the largest area available is
100 blocks.

0100101:03A 3-65

File Management: L(ist Directory

The following example is a list directory
transaction involving wild cards:

Prompt:

Dir listing of what vol ?

Response:

MYDISK:FIL=TEXT

The system displays the following listing:

MYDISK:

FILE1l.TEXT 38 1-Jan-83
FILE2.TEXT 22 1-Jan-83
FILE3,TEXT 25 1-Jan-83

2/5 files <listed/in-dir>, 85 blocks used, 100 unused, 100 in largest

The following example is a list directory
transaction that involves writing the directory
subset to a device other than CONSOLE.

Prompt:

Dir listing of what vol ?

Response:

MYDISK:FIL=TEXT,PRINTER:

3-66 0100101:03A

File Management: L(ist Directory

The system prints the following listing:

MYDISK:

FILE>l.TEXT 38 1-Jan-83
FILE2.TEXT 22 1-Jan-83
FILE3.TEXT 25 1-Jan-83

2/5 files <listed/in-dir>, 85 blocks used, 100 unused, 100 in largest

EXAMPLE:

The following example is a list directory
transaction that involves writing the directory
subset to a file:

Prompt:

Dir listing of what vol ?

Response:

MYDISK:FIL=TEXT, #5:LIST.TEXT

The system creates the file LIST.TEXT on the
disk in drive #5. LIST.TEXT contains this
listing:

MYDISK:

FILL1.TEXT 38 1-Jan-83
FILE2 .TEXT 22 1-Jan-83
FILE3,TEXT 25 1-Jan-83

2/5 files -listed/in-dir>, 85 blocks used, 100 unused, 100 in largest

0100101:03A 3-67

File Management: M(ake

M(ake
On the menu: M(ake

This function creates a directory entry with the
specified file name.

M(ake requires you to enter a file name. Wild
card characters aren't allowed. The file size
specification option is extremely helpful because
it allows you to determine the size of the file
you are creating. If you omit the size
specification, the filer creates the file by
consuming the largest unused area of the disk.
The file size is determined by following the file
name with the desired number of blocks, enclosed
in square brackets ([]). The file size
specification was described under "File and
Volume Names" earlier.

Text files must be an even number of blocks with
the smallest possible text file four blocks long
(two for the header, and two for text). M(ake
enforces these restrictions; if you try to M(ake a
text file with an odd number of blocks, M(ake
rounds the number down.

M(ake can be used to create a file (with no
initialized data) for future use, to extend the
size of a file (using the size specification), or to
recover a lost file.

3-68 0100101:03A

File Management: M(ake

EXAMPLE:

Prompt:

Make what file?

Response:

MYDISK:FILE.TEXT(28]

The preceding procedure creates the file
FILE.TEXT on the volume MYDISK:. It is made
to be 28 blocks long to occupy the first unused
28-block area on the volume.

M(ake is used to create .SVOL files which
contain subsidiary volumes. For more informaton
about this, see the section, "Subsidiary Volumes."

0100101:03A 3-69

File Management: N(ew

N(ew
On the menu: N(ew
This function clears the work file.

If you have a work file, the system displays this
prompt:

Throw away current work file?

Entering 'Y' clears the work file, while 'N'
returns you to the outer level of the filer.

If <work file name>.BACK exists, then the system
displays the following prompt:

Remove <work file name>,BACK ?

Entering 'Y' removes the file in question, while
'N' leaves the .BACK file alone, but does create
a new work file.

When N(ew is successful, the system displays this
message:

Workfile cieared

3-70 0100101:03A

File Management: O(n/off-line

O(n/off-line
On the menu: O(n/off-line

This function mounts or dismounts subsidiary
volumes.

With the filer menu displayed, press 'O'. The
system displays the following menu:

Subsidiary Volume: M{ount, D(ismount, C(lear

Press 'M'. The system displays the following
prompt:

Mount what vol ?

To dismount a subsidiary volume, press 'D'. The
system displays the following prompt:

Dismount what vol ?

To dismount all the subsidiary volumes, press 'C'.

The system immediately dismounts all the
subsidiary volumes that are currently mounted.

0100101:03A -1

File Management: O(n/off-line

Suppose that a prineipal volume, P_VOL:, contains
the following files and that the prefix is set to
P VOL.

P_VOL:
FILE1l.TEXT
FILE1.CODE
VOL1.SVOL
FILE2,.TEXT
FILE2.CODE
DOC1.SVOL
FUN.SVOL

To mount subsidiary volumes on P_VOL:, you can
respond to the mount prompt with the file name
of the .SVOL file as in the following examples.

Mount what vol ? VOL1l.SVOL<return>
Mount what vol ? VOL1.SVOL,FUN.SVOL<return>
Mount what vol ? P_VOL:=<return>

Mount what vol ? #5:=<return>

The first example mounts VOL1l:; the second
mounts VOL1: and FUN:; the third mounts all
three subsidiary volumes on P_ VOL: and the
fourth example mounts all subsidiary volumes on
the disk in drive #5:.

3-72 0100101:03A

File Management: O(n/off-line

To dismount any of these volumes, you can
respond to the dismount prompt with the Volume
ID as in the following examples.

Dismount what vol ? #14:
Dismount what vol ? VOLl:<return>

Dismount what vol ? VOLl:, DOCl:, FUN:<return>

The first example dismounts the subsidiary volume
associated with the device number #14. The
second example dismounts VOL1:, and the third
example dismounts three subsidiary volumes.

NOTE: When mounting a subsidiary volume,
represent it as a file name (VOL1.SVOL). When
dismounting a subsidiary volume, represent it as a
volume name (VOL1:).

For more information about subsidiary volumes,
sce the subsidiary volume section earlier in this
chapter.

0100101:03A 3-73

File Management: P(refix

P(refix
On the menu: P(refix

This function changes the current default volume
to the volume that you specify.

This funection requires you to enter a volume
name or device number. The specified volume
need not be on-line.

If you specify a device number (such as #5), then
the new default prefix is the name of the volume
in that device. If no volume is in the device
when prefix is used, the default prefix remains
the device number (such as #5); thereafter, any
volume in the default device is the default
volume.

Since P(refix tells you the volume name of the
new default volume, you may respond to its
prompt with a (:) to determine the current
default volume's name. To return the prefix to
the booted or root volume, you may respond with
an asterisk (*). '

To use this command, select P(refix and the
following prompt will be displayed:

Prefix titles by what vol?

You should enter the desired volume name or
device number.

3-74 0100101:03A

File Management: P(refix

CAUTION: When using only a device number for
the prefix, remember that any disk in the device
is the default disk. In this situation, it is very
easy to assume that the system is prefixed to a
particular disk, exchange the disks, and write
over a valuable file or destroy information.

0100101:03A 3-75

File Management: Q(uit

Q(uit
On the menu: Q(uit

This function terminates the filer and returns you
1o the Command menu.

3-76 0100101:03A

File Management: R(emove

R(emove
On the menu: R{em

This function removes file entries from the
directory.

R(emove requires one file specification for each
file you wish to remove. Wild cards are legal.
Size specification information is ignored.

EXAMPLE:

Given the example files (assuming that they are
on the default volume):

EXAMPLE.TEXT
COPYIT.CODE
MEMO.TEXT
RUNIT.CODE

Prompt:

Remove what file?

Response:

RUNIT.CODE

Removes the file RUNIT.CODE from the volume
directory.

0100101:03A 3-71

File Management: R(emove

NOTE: To remove SYSTEM.WRK.TEXT and/or
SYSTEM.WRK.CODE, use the N(ew function; not
R(emove. Using R(emove may confuse the
system.

Before finalizing any removals, the filer displays
the following prompt:

Prompt:

Update directory?

Entering 'Y' causes all specified files to be
removed. 'N' returns you to the outer level
of the filer without removing any files.

As noted before, wild cards in R(emove
activities are legal.

EXAMPLE:

Prompt:

Remove what file?

Response:

=CODE

Causes the filer to remove RUNIT.CODE and
COPYIT.CODE.

3-78 0100101:03A

File Management: R(emove

Pressing the wild card question mark (?)
causes the R(emove function to display a
prompt questioning the removal of each file on
a volume. This is useful for cleaning out a
directory and for removing a file that has
(inadvertently) been created with a nonprinting
or otherwise invalid character in its name.

WARNING: Remember that the filer considers
an equal sign (=) by itself to specify every
file on the volume. Pressing an equal sign
alone causes the filer to remove every file on
the directory. (To escape from this situation,
press 'N' in response to the 'Update
directory?' prompt.)

0100101:03A 3-79

File Management: S(ave

S(ave
On the menu: S(ave

This function saves the work file under the file
name you specify.

The entire file specification isn't necessary. If
the volume ID isn't given, the default disk is
assumed. Wild cards aren't allowed, and the size
specification option is ignored.

EXAMPLE:
Prompt:

Save as VOLNAME: FILENAME?

The first prompt appears if your work file was
derived from an existing file. It asks you if
you want to save it under the old file name.
Press 'Y' if you do, and 'N' otherwise.

The second prompt appears if your work file
was created from scratch, or if you respond
'N' to the first prompt.

3-80 0100101:03A

File Management: S(ave

Enter a file name of ten characters or less.
This causes the filer to automatically remove
any old file having the given name and to save
the work file under that name. For example,
pressing 'X' in response to the prompt causes
the work file to be saved on the default disk
as X.TEXT. 1If a code file has been compiled
since the last update of the work file, that
code file is saved as X.CODE.

The filer automatically appends the suffixes
.TEXT and .CODE to files of the appropriate
type. If. you enter AFILE.TEXT in response to
the prompt, the filer saves the file as
AFILE.TEXT.TEXT. The filer ignores any
illegal characters in the file name, except
colon (:). If the file specification includes a
volume ID, the filer assumes that you wish to
save the work file on another volume.

For example, if in response to the filer prompt
'Save as what file?', you enter 'VOLI:FILEl',
the system then displays the following message:

MYDISK:SYSTEM .WRK,TEXT-->VOL1:FILE).TEXT

0100101:03A 3-81

File Management: T(ransfer

T(ransfer
On the Menu: T(rans

This function copies the specified file or volume
to the given destination.

T(ransfer requires you to enter two
specifications: one for the source file or volume
and another for the destination file or volume,
separated by either a comma or <return>. Wild
cards are permitted in file name specifications
only. Size specification information is recognized
for the destination file. If you ineclude a size
specification, the file is placed in the first
unused area on the disk whieh is at least as
large as the size specification indicates.

3-82 0100101:03A

File Management: T(ransfer

EXAMPLE:

Assume that you wish to transfer the file
DOCU.TEXT from the disk MYDISK to the disk
BACKUP.

Prompt:

Transfer what file ?

Response:

MYDISK:DOCU.TEXT

Prompt:

To where?

Response:

BACKUP:NAME.TEXT

0100101:03A 3-83

File Management: T(ransfer

NOTE: On a one-drive machine, don't remove
the source disk until the system displays that
prompt asking you to insert the destination disk.

Prompt:

Put in BACKUP: press <space> to continue

You should remove the source disk, insert the
destination disk, and press <{space>.

In any csse, when the T(ransfer is complete, the
filer displays this message:

MYDISK:DOCU.TEXT-->BACKUP: NAME.TEXT

You may want to transfer a file without changing
its name. The filer enables you to do this easily
by allowing the character dollar sign ($) to
replace the file name in the destination file
specification. In the above example, had you
wished to save the file DOCU.TEXT on BACKUP
under the name DOCU.TEXT, you could have
done so like this.

MYDISK:DOCU.TEXT,BACKUP: $

3-84 0100101:03A

File Management: T(ransfer

WARNING: Avoid entering the second file
specification with the file name completely
omitted.

For example, if in response to the T(ransfer
function prompt, 'Transfer what file', you respond
with MYDISK:DOCU.TEXT,BACKUP:, the system
will display the following prompt.

Destroy BACKUP: ?

A 'Y' answer causes the directory of BACKUP:
to be destroyed.

NOTE: 1If the file to be transferred is two
blocks long or less, the system won't display the
warning prompt. The file is transferred to the
area where the bootstrap normally resides (in
front of the disk's directory).

You may transfer files to volumes that aren't
storage volumes, such as CONSOLE: and
PRINTER:, by specifying the appropriate volume
ID (see Appendix A) in the destination file
specification. Don't specify a file name for a
communication device. The system will ignore it.
Make sure the device is on-line before the
transfer.

0100101:03A 3-85

File Management: T(ransfer

EXAMPLE:

Prompt:

Transfer what file?

Response:

DOCU.TEXT

Prompt:

To where?

Response:

PRINTER:

The preceding procedure causes DOCU.TEXT to
be written to the printer.

You may also transfer from storage devices,
provided they are input devices. The source file
must end with an <eof> (which is a ™"soft
character" configurable using the SETUP utility);
otherwise, the filer won't know when to stop
transferring. File names accompanying a
communication device are ignored.

3-86 0100101:03A

File Management: T(ransfer

Wild cards are recognized in the T(ransfer
function. If the source file specification contains
a wild card character, and the destination file
specification involves a storage device, then the
destination file specification must also contain a
wild card character.

The subset-specifying strings in the source file
specification are replaced by the analogous
strings in tne destination file specification
(replacement strings). Any of the
subset-specifying or replacement strings may be
empty. The filer considers the file specifications
equal sign (=) or question mark (?) to specify
every file on the volume.

0100101:03A 3-87

File Management: T(ransfer

EXAMPLE:

The volume MYDISK contains the files:

PODA-1, PODB-1, PODC-1

The destination disk is SUCCESS.

Prompt:

Transfer what file?

Response:

P=-1,SUCCESS:M=2

The system then displays the following listing:

MYDISK:PODA-1 --> SUCCESS:MODA-2
MYDISK:PODB-1 --> SUCCESS:MODB-2
MYDISK:PODC-1 --> SUCCESS:MODC-2

The filer will try to transfer every file on the
disk if you specify the equal sign (=) as the
source file name.

3-88 0100101:03A

File Management: T(ransfer

Using the equal sign (=) as the destination file
name specification replaces the subset-specifying
strings in the source specification with nothing.
You may use the question mark (?) in place of
the equal sign. Using the question mark, you
will be asked to verify each operation before it
is performed.

You may transfer a file from a volume to the
same volume by specifying the same volume ID
for both source and destination file
specifications. This is frequently useful when
you wish ‘to relocate a file on the disk.
Specifying the number of blocks desired causes
the filer to copy the file in the first available
area of at least that size. If you don't specify
a size, the file is written in the largest unused
area.

If you specify the same file name for both source
and destination on a same-disk transfer, the filer
rewrites the file to the size-specified area and
removes the older copy—without changing the
file's size.

EXAMPLE:

Prompt:

Transfer what file?

Response:

#4:QUIZZES.TEXT,#4:QUIZZES.TEXT[20]

0100101:03A 3-89

File Management: T(ransfer

The preceding procedure causes the filer to
rewrite QUIZZES.TEXT in ‘the first 20-block area
encountered (counting from block 0) and to
remove the previous version of QUIZZES.TEXT.

You can also transfer an entire volume from one
disk to another. The file specifications for both
source and destination should consist of only
volume ID; for example, DISK1l:, DISK2:.
Transferring a storage volume to another storage
volume wipes out the destination volume so that
it becomes an exact copy, including directory, of
the source volume.

NOTE: Some disks have areas which aren't
accessible by the system. The filer can't
transfer those areas. Bootstraps, in particular,
may have to be transferred with the utility
BOOTER.

3-90 0100101:03A

File Management: T(ransfer

EXAMPLE:

Assume that you want an extra copy of the disk
MYDISK: and transfer to a disk called EXTRA:

Prompt:

Transfer what file?

Response:

MYDISK:,EXTRA:

Prompt:

Destroy EXTRA: ?

WARNING: If you enter 'Y', the directory of
EXTRA: will be destroyed, with EXTRA:
becoming an exact copy of MYDISK:. An 'N’
response returns you to the outer level of the
filer with no transfer taking place.

This volume-to-volume transfer process is a good
backup procedure. Use the C(hange funection to
change the name of the backup disk. The two
disks shouldn't have the same name because this
may confuse the system.

0100101:03A 3-91

File Management: T(ransfer

Although you can transfer a volume (disk) to
another, using a single disk drive, it is tedious.
This is because the transfer in main memory
reads the information in rather small chunks, and
a great deal of disk juggling is necessary to
complete the transfer.

3-92 0100101:03A

File Management: V(olumes

V(olumes
On the menu: V(ols

This function lists volumes currently on-line with
their associated volume (device) numbers.

The following listing is a typical display.

Vols on-line:

1 CONSOLE:

2 SYSTERM:
4 ¥ WNCHSTR: (12000]
5 &# FLOPPY1l: [320]

6 PRINTER:
12 & FLOPPY2: [640)
Root vol is - WNCHSTR:
Prefix is - FLOPPY2:

"Root vol" is the system disk or boot disk.
"Prefix is" indicates the default disk. Storage
volumes are indicated by '#'.

After each disk volume, the number of 512-byte
blocks that it contains is given in square
brackets. ' This can be useful if the system uses
disks of varying storage capacities. In the
preceding example, the Wirchester disk on-line in
drive #4: contains 12000 blocks of storage
capacity, and the floppies on-line in drives #5:
and #12: contain 320 and 640 blocks,
respectively.

0100101:03A 3-93

File Management: V(olumes

The V(olumes function also displays the mounted
subsidiary volumes. The name of the principal
volume and the name of the starting block are
given for each subsidiary volume listed.

The following listing is an example.

Vols on-line:
1 CONSOLE:
2 SYSTERM:
4 # WNCHSTR: (12000]

5 # FLOPPYl: [320]
6 PRINTER:

12 # FLOPPY2: [640])
13 & DOCS: [3000] on volume WNCHSTR: starting at block 400
14 # PROGRMS: [3000] on volume WNCHSTR: starting at block 3700
15 # FUN: [3000) on volume WNCHSTR: starting at block 7040

Root vol is - WNCHSTR:

Prefix is - FLOPPY2:

In this example, three subsidiary volumes on
WNCHSTR: are mounted. They use device
numbers #13:, #14:, and #15:. Each of these
volumes contains 3000 blocks.

3-94 0100101:03A

File Management: W(hat

W(hat
On the menu: W(hat

This function identifies the name of the current
work file. If the work file hasn't been saved,
the phrase "(not saved" is displayed after the file
name.

EXAMPLE:

Work file is DOC1l:STUFF

0100101:03A 3-95

File Management: X(amine

X(amine
On the menu: X(amine

This function attempts to
suspected bad blocks.

physically recover

You must specify the name of a volume that is

on-line.

EXAMPLE:

Prompt:

Examine blocks on what vol?

Response:

<volume ID>

Prompt:

Block-range ?

Response:

<block-number>
or
<block-number> — <block-number>

3-96

0100101:03A

File Management: X(amine

If you just enter a block number, only that block
is examined. If you enter two numbers separated
by a hyphen, all of the blocks from the first one
to the second one, inclusive, are examined. You
should have just performed a bad block scan and
should enter the block number(s) returned by that
scan. If any files are endangered, the following
prompt should appear:

Prompt:

file(s) endangered:
<file name>
Fix them?

Entering 'Y' causes the filer to examine the
blocks and return either of the messages:

Block <block-number> may be ok

In which case the bad block has probably been
fixed, or block <block-number> is bad. If block
<block-number> is bad, the filer offers you the
option of identifying the block(s) as BAD. Blocks
marked BAD aren't moved during a K(runch and
are rendered unavailable and effectively harmless
(though they do reduce the amount of room on
the disk).

An 'N' response to the 'fix them?' prompt
returns you to the outer level of the filer.

0100101:03A 3-97

File Management: X(amine

WARNING: A block that is fixed may contain
garbage. "May be ok" should be translated as "is
probably physically ok." Fixing a block means
that the block is read, is written back out to the
block and, is read again. If the two reads are
the same, the message is "may be ok." If the
reads are different, the block is declared bad and
may be marked as such if so desired.

3-98 0100101:03A

File Management: Z(ero

Z(ero
On the menu: Z(ero

This function initializes the directory on the
specified volume, rendering the previous directory
irretrievable.

EXAMPLE:

Prompt:

Zero dir of what vol ?

Response:

<volume 1D>

Prompt:

Destroy <volume name> ?

A 'Y' response generates...

Prompt:

Duplicate dir ?

0100101:03A 3-99

File Management: Z(ero

If you enter a 'Y', a duplicate directory is
maintained. This is advisable because if the disk
directory is destroyed, a utility program called
COPYDUPDIR can use the duplicate directory to
restore the disk.

The next prompt appears only if there was a
directory on the disk before the Z(ero function
was used:

Prompt:

Are there 320 blks on the disk ? (y/n)

'Y' accepts that number of blocks and skips the next
prompt. 'N' generates...

Prompt:

¢ of blocks on the disk ?

Enter the number of blocks desired. This
number varies depending upon your particular
disks.

The next prompt is:

New vol name ?

3-100 0100101:03A

File Management: Z(ero

Enter any valid volume name.
Prompt:

<new volume name> correct ?

'Y' accepts the name. 'N' returns to the
prompt requesting a new volume name. If the
filer succeeds in writing the new directory on
the disk, this message is displayed:

<new volume name> zeroed

0100101:03A 3-101

CHAPTER 4
SCREEN-ORIENTED

EDITOR

Screen-Oriented Editor

INTRODUCTION

The editors available with the p-System allow you
to create, alter, and examine text files. Text files
contain human-readable material such as memos or
manuscripts.

Three editors are available with the p-System: the
Screen-Oriented Editor, the advanced editor
(EDVANCE), and the Line-Oriented Editor (YALOE).
This chapter is devoted to the Screen-Oriented
Editor.

THE EDITOR

Introduction

In order to use the editor, SYSTEM.EDITOR must
reside on a disk which is on-line. Also, the
SYSTEM.MISCINFO file must be configured for
your particular terminal. If this hasn't already
been done for you, configure it with the SETUP
utility described in Chapter 5.

The Window into the File

The Screen-Oriented Editor is specifically for
use with video display terminals (or cathode
ray tubes, CRTs) most of which have 24-line
screens. The editor usually uses the first line
of the screen to display its menu. Therefore,
most of the time ‘it displays 23 lines of text
within the file. Using the editor, you may
view any part of the file in 23-line segments.

0100101:04A 4-3

Screen-Oriented Editor

You actually look into the file through a
window that the editor provides. Although you
can access the whole file by using editor
commands, you can view only a portion of it
through the window in the screen. When an
editor command takes you to a position in the
file that isn't presently displayed, the window
moves to show you that new portion of the
file.

The Cursor

The cursor is usually a small rectangular box
or an underline that appears to be on (or
under) a character. On some terminals, the
cursor may blink continuously. The cursor is
logically located between the character to its
left and the character on which it rests. You
position the cursor to indicate to the editor its
commands are to affect the text. For
example, the editor will insert text in front of
(that is, to the left of) the charcter on which
the cursor rests.

You can move the cursor to any specifie
location in a file; at that point, it then
represents your exact position in the file. The
window shows the portion of the file that
surrounds the cursor; to see another portion of
the file, move the cursor. The cursor follows
the commands of the editor. For example, if
you delete portions of the file, you move the
cursor to indicate the beginning and extent of
the deletion.

0100101:04A

Screen-Oriented Editor

In this chapter, all text examples are shown in
uppercase, with the cursor denoted by an
underline or a lowercase character.

The Menu

The editor displays a menu at the top of the
screen to remind you of the current command
and the options available for that command.
The most commonly used options appear in the
menu. The following is an example of the
editor's first-level menu, called the E(dit menu.

>Edit: A(djust C(opy D(el F(ind I(nsert J(ump K(ol M(argin P(age ?

Notation Conventions

The notation used in this chapter corresponds
to the notation the editor uses to prompt you.
The system uses angle brackets (< >) to
indicate a single key like the return key
(<return>) or the space bar (<space>).

Enter 'FILE NAME<return>' means to enter the
name of the file and then press the return key.
You may use either lowercase or uppercase
when entering editor commands.

0100101:04A 4-5

Screen-Oriented Editor

Editing Environment Options

The editor has two chief modes of operation:
one for entering and modifying programs and
another for entering and modifying English (or
any other language) text. The first mode
includes automatic indentation; the second
includes automatic text filling. For more
information on these two options, see the
description of the E(nvironment option of the
S(et command.

Command Hierarchy

The Command menu is the first or highest level
of the command hierarchy. To enter the
system editor, press 'E' from the Command
menu. If you don't have a text work file, you
are prompted for the name of a file to edit.
You should enter the file name without the
" TEXT" suffix, followed by <return>. (If you
have a text work file, that file is
automatically edited.) The system will display
the E(dit menu:

>Edit: A(djust C(opy D(el F(ind I(nsert J(ump K(ol M(argin P(age ?

The E(dit menu is the second level of the
command hierarchy, as is the F(iler menu and
all the other menus that you can display from
the Command menu.

4-6 0100101:04A

Screen-Oriented Editor

I

|

{ For example, to select the editor I(nsert
option, press 'I'' The system now displays the

third level of the command hierarchy:

|

>Insert: Text {<bs> a char, a line} [<ext> accepts, <esc> escape

Repeat Factors

The F(ind and R(eplace commands, as well as
most of the cursor-movement keys, allow repeat
factors. A repeat factor allows you to specify
the number of times a command should be
performed by the editor. For example, enter
'2R' to select the R(eplace command. The
editor will display this third-level menu.

>Replacel2]: L(it V(fy <targ><sub> =>

The number 2 that you entered appears inside
the square brackets to indicate that the editor
will perform the specified function two times.

h If you don't specify a repeat factor, the

| default (assumed) factor is 1. Use a slash

(/) to specify that a function should be
performed as many times as possible.

0100101:04A 4-7

Tt i . e L RN el ey QT

Screen-Oriented Editor

Direction Indicator

The direction indicator determines whether the
cursor will be moved in the forward direction
or in the reverse direction. For example, if
the direction indicator is forward, the cursor
will move to the right (toward the end of the
file) when you press the space bar. If the
direction indicator is reversed, then the cursor
will move left (toward the beginning of the
file) when you press <space>.

The first character in the menu indicates the
global direction. A right angle bracket (>)
indicates movement to the right, and a left
angle bracket (<) indicates movement to the
left. To change the global direction, press the
left or right angle brackets on the keyboard.
When you enter the editor, the global direction
is right.

Using the Editor

Moving the Cursor

The special keys described in this section
enable you to move the cursor in a number of
ways. Global direction affects the space bar,
return key, and the tab key. It doesn't affect
the arrow keys and <backspace>.

0100101:04A

Screen-Oriented Editor

Pressing the equal sign (=) moves the cursor
to the beginning of the last text that was most
recently inserted, found, or replaced. The
equal sign works from anywhere in the file and
isn't affected by the global direction. An
I(nsert, F(ind, or R(eplace saves the position
(within the work file) of the beginning of the
insertion, find, or replacement.

Pressing the equal sign moves the cursor to
that position and saves the cursor location. If
you perform a C(opy or a D(elete between the
beginning of the file and that absolute position,
the cursor won't jump to the start of the
insertion, because that absolute position has
then been lost.

The J(ump command moves the cursor to the
beginning or end of a file, or to a previously
defined marker anywhere within the file (see
the S(et M(arker command). The P(age
command moves the screen window forward (or
backward) by one screen and positions the
cursor to the beginning of the line. These
commands are described in the section entitled,
"Screen-Oriented Editor Commands."

0100101:04A 4-9

Screen-Oriented Eaitor

The following list summarizes the keys which
move the cursor.

Not affected by current global direction:
<{down-arrow> Moves the cursor down
{up-arrow> Moves the cursor up
<right-arrow> Moves the cursor right
<{left-arrow> Moves the cursor left

<backspace> Moves the cursor left

Motion determined by global direction:

{space> Moves the cursor one space
in the global direction

<{tab> Moves the cursor to the
next tab stop

<{return> Moves the cursor to the
beginning of the next line

These keys change the global direction to
backward:

Left angle bracket

(
Comma (
Minus Sign (

4-10 0100101:04A

Screen-Oriented Editor

These keys change the global direction to

forward:
Right angle bracket (>)
Period £ <3
Plus Sign (+)

You can use repeat factors with any of the
cursor movement keys listed above.

To move the cursor on terminals which don't
have arrow keys, use the SETUP utility to
designate a set of control keys to act as
cursor keys. To configure the system for use
with a particular terminal, refer to Chapter 5.

You can't move the cursor outside the text of
the program. For example, after the 'N' in
'BEGIN' in Figure 4-1, press the <right-arrow>;
this moves the cursor to the 'W' in 'WRITE'.
Similarly, at the first 'W' in "WRITE('"TOO WISE
');", use the <left-arrow> to back up after the
'N' in 'BEGIN',

BEGIN_
WRITE ('TOO WISE ');

BEGIN
wRITE ('TOO WISE ');

Figure 4-1. Cursor Example

0100101:04A 4-11

Screen-Oriented Editor

In Figure 4-2, if you must change the
'WRITE('TOO WISE ');' found in the third line
to a 'WRITE('TOO SMART ');', you must first
move the cursor to the correct position.

For example, if the cursor is at the 'P' in
'"PROGRAM STRING1;', go down two lines by
pressing the <down-arrow> twice. To mark the
positions the cursor occupies, labels a, b, and ¢
are used in Figure 4-2. The 'a' marks the
initial position of the cursor; the 'b' marks the
cursor position after the first <down-arrow>;
and the 'e', marks the cursor after the second
{down-arrow>.

aROGRAM STRING1
bEGIN
CWRITE('TOO WISE ');

Figure 4-2. Cursor Positions

Now, using the <right-arrow>, move the cursor
until it sits on the 'W' of 'WISE'. Note that
with the use of the <down-arrow>, the cursor
appears to be outside the text (e¢). However,
when the cursor is displayed outside the text,
it is actually on the closest character to the
right or left. In this case, the editor considers
the cursor to be at the 'W' in 'WRITE'; when
you press the first <left-arrow>, the cursor
jumps to the 'R' in '"WRITE',

4-12 0100101:04A

Screen-Oriented Editor

F(ind and R(eplace

Both F(ind and R(eplace operate on delimited
strings. The editor has two string storage
variables. One, called <targ> by the menus, is
the target string and is used by both
commands; while the other, called <sub> by the
R(eplace menu, is the substitute string and is
used only by R(eplace.

Enter these strings when using F(ind or
R(eplace. Once entered, they are saved by the
editor and may be reused.

When you enter a string, you must use a
special character to delimit (mark) the
beginning and end of the string. For example,
/fun/, $work$, and "gismet" represent the
strings fun, work, and gismet, respectively.
The editor allows any character that isn't a
letter or a number to be used as a delimiter.

F(ind and R(eplace operate in either of two
search modes: literal and token. These modes
are stored by the S(et E(nvironment command
and can be changed by it, or they may be
temporarily overridden using the F(ind or
R(eplace commands.

0100101:04A 4-13

Scre

4-14

en-Oriented Editor

In the literal mode, the editor looks for any
occurrences of the target string. In the token
mode, the editor looks for isolated occurrences
of the target string. The editor considers a
string isolated if it is surrounded by spaces or
other punctuation. For example, in the
sentence "Put the book in the bookcase.," using
the target string "book," the literal mode finds
two occurrences of "book," while the token
mode finds only one—the word "book" isolated
by spaces.

In addition, the token mode ignores spaces
within strings, so that <{space> comma <space>
(™, ™ and comma (",") are considered the same
string.

When using either F(ind or R(eplace, you may
use the strings previously entered by pressing
'S'. For example, entering 'RS/<any-string>/'
causes the R(eplace command to search for an
occurrence of the previous target string and
replace it with <any string>. Entering
'R/<any-string>/S' causes the next occurrence
of <any string> to be replaced with the
previous substitute string.

To find out the current contents of the <targ>
and <sub> strings, use the S(et E(nvironment
command.

0100101:04A

Screen-Oriented Editor

Work Files

When you enter the editor, the system reads
and displays the work file. If you haven't
already created a work file, the editor will
display the following prompt:

>Edit: No work file is present.
File? (<ret> for no file)

There are three ways to respond to this
prompt:

1. With a name, for example 'STRING1'<retd>.
The file named STRING1.TEXT is now
retrieved. The file STRING1 could contain
a program, also called STRINGI1, as in
Figure 4-3. After entering the name, the
text of the first part of the file appears on
the screen.

PROGRAM STRING1;

BEGIN
WRITE('TOO WISE');
WRITE('YOU ARE');
WRITELN(',"');
WRITELN('TOO WISE');
WRITELN('YOU BE')

END.

Figure 4-3. Program Stringl

0100101:04A 4-15

Screen-Oriented Editor

2. With a <return>. This response indicates

that you wish to start a new file. The only
thing visible on the screen after this

response is the E(dit menu. Press 'I' to
begin inserting a program or text.

3. With <escape>. This response stops the
editor, causing the system to return to the
Command menu.

Using Insert

To use the I(nsert command, press 'I' from the
E(dit menu. Place the cursor on top of the
letter before which you want to make an
insertion. The cursor must be in the correct
position before pressing 'I'. From the point of
insertion, the rest of the line is moved toward
the right side of the screen. If the insertion
is long, that part of the line is moved down to
allow room on the screen.

After pressing 'I', the system displays the
following prompt:

>Insert: text {<bs> a char, a line} [<etx> accepts, <esc>

The cursor is at the 'W' in 'WISE' (see Figure
4-3). Enter 'SMART'. The word appears on
the screen as it is entered (see Figure 4-4).

4-16 0100101:04A

escape

Screen-Oriented Editor

The choice at the end of the prompt indicates
that pushing the <etx> key accepts the
insertion; while pushing the <ese> key rejects
the insertion, leaving the text as it was before
pressing 'I'. Press <etx> (see Figure 4-5).

BEGIN WRITE('TOO SMART__ WISE ');

Figure 4-4. Screen after entering 'SMART'

BEGIN WRITE('TOO SMARTWISE ');

Figure 4-5. Screen after <etx>

While in I(nsert, you can insert a carriage
return by pressing <return>. The editor then
starts a new line. Notice that a carriage
return starts a new line with the same
indentation as the previous one. This is often
convenient when entering program text. (See
the section on Auto-Indent mode.)

Using Delete

D(elete works like I(nsert. Move the cursor to
the '"W' IN WISE (see Figure 4-5) and press 'D'
to select the D(elete command. The system
then displays the following prompt:

>Delete: < > <Moving commands> {<etx> to delete, <esc> to abort}

0100101:04A 4-17

Screen-Oriented Editor

Each time you press <space>, a letter
disappears from the screen. Press <{space> four
times. Pressing <backspace> causes a
character to reappear. Pressing <{etx> causes
the deleted text to be removed permanently, or
pressing <esc> causes it to reappear and remain
unaffected.

To delete a carriage return at the end of a
line, press 'D' and then press <space> until the
cursor moves to the beginning of the next line.

Leaving the Editor

When all text changes and additions have been
made, press 'Q' to leave the editor. The
system then displays the following menu.

>Quit:

U(pdate the work file and leave

E(xit without updating

R(eturn to the editor without updating
W(rite to a file name and return

Using the U(pdate option saves a copy of the
file on disk as SYSTEM.WRK.TEXT. This file
is your work file.

The W(rite option saves the file under whatever
name you wish., The file isn't necessarily your
work file.

4-18 0100101:04A

Screen-Oriented Editor

R(eturn simply returns you to the editor
without saving anything to disk.

E(xit leaves the. editor without saving anything.
Any changes or additions to the file are
discarded and lost permanently.

0100101:04A 4-19

Sereen-Oriented Editor: A(djust

Screen-Oriented Editor Commands

The Screen-Oriented Editor activities are covered
in alphabetical order in this section.

A(djust
On the menu: A(djust

Repeat factors are allowed in conjunction with
the arrow keys within A(djust.

Press 'A' from the E(dit menu. This displays
the following menu:

*>Adjust: L(just R(just C(enter <arrow keys> {<etx> to leave}

The A(djust command moves a line to the left
or to the right. The <right-arrow> and
{left-arrow> move the line on which the cursor
is located. Each time you press a
{right-arrow>, the whole line moves one space
to the right. The <left-arrow> moves the line
one space to the left.

To adjust more than one line, use the
{up-arrow> or <down-arrow>; the line above or
below the previously adjusted line is
automatically adjusted by the same amount.

4-20 0100101:04A

reen-Oriented Editor: A(djust

The character 'L' justifies the line to the left
margin, 'R' justifies it to the right margin, and
'C' centers the line between the margins. Use
the <up-arrow> and the <down-arrow> to
duplicate the adjustment on preceding
(succeeding) lines.

Use the S(et E(nvironment command to alter
the margins.

The system repositions the cursor to the
beginning of the last line adjusted. Press
<etx> to exit the A(djust command; <ese¢> won't
work here.

0100101:04A 4-21

Sereen-Oriented Editor: C(opy

C(opy

4-22

On the menu: C(opy
Repeat factors are not allowed.

Press 'C' from the E(dit menu. The following
menu is displayed.

>C(opy: B(uffer F(rom file <esc>

The C(opy command allows text to be copied
into the current text from one of two sources:
a temporary buffer called the "copy buffer," or
a text file on disk. To copy from the copy
buffer, press 'B'. The editor immediately
copies the contents of the buffer into the file,
starting at the location of the cursor when you
pressed 'C'. The buffer may be recopied until
you change the contents of the buffer.

When the C(opy function ends, the ecursor is
placed at the end of the copied text.

The following commands affect the copy buffer.

1. D(elete: When you press <etx>, the buffer is
loaded with the deletion. When you press
<{esc>, the buffer is loaded with what would
have been deleted.

0100101:04A

Screen-Oriented Editor: C(opy

2. I(nsert: When you press <etx>, the buffer is
loaded with the insertion. When you press
{esc>, the copy buffer is emptied.

3. Z(ap: If you use the Z(ap command, the
buffer is loaded with the deletion.

4. M(argin: This command causes the copy
buffer to be left empty.

Generally, if the text that you want to copy
already exists, you should D(elete it, and press
{esc>. .Then you can use C(opy B(uffer to
place that text anywhere you like. The
original text remains unaffected.

To copy text from another file, press 'F'. The
system then displays the following menu.

>C(opy: From what filelmarker,marker)?

Any file may be specified; .TEXT is assumed.
The markers are optional and are used for
copying part of a file.

0100101:04A 4-23

Screen-Oriented Editor: C(opy

4-24

To copy part of a file, you must have
previously S(et markers, at the beginning and
end of the text you wish to copy. You may
use two markers, or the file's beginning or end
as a marker. For example, if you specify
[,marker] or [marker,], the file is copied from
the start of the file to the marker or from the
marker to the end of the file.

0100101:04A

Screen-Oriented Editor: D(elete

D(elete
On the menu: D(el
Repeat factors aren't allowed.

To select the D(elete command, press 'D' from
the E(dit menu. The following prompt is
displayed:

>Delete: < > <Moving commands> {<etx> to delete, ,<esc> to abort}

You must have first placed the cursor where
you want to begin deleting text. The D(elete
command uses an "anchor" at this initial
position. As you move the cursor away from
the anchor, characters disappear. Moving back
toward the anchor restores those characters to
the text file. To accept the deletion, press
<{etx>; to escape, press <esc>,

Within the D(elete command, all cursor-moving
actions are valid, including repeat factors and
global direction.

Whenever a deletion is larger than the
available copy buffer space, the editor will
display the following warning.

There is no room to copy the deletion. Do you wish to delete anyway?

0100101:04A 4-25

Screen-Oriented Editor: D(elete

4-26

A

'Y' or 'y' is a yes answer; any other

character escapes the D(elete command.

The following procedure shows how to use the
D(elete command (see Figure 4-6).

1.

2.

Move the cursor to the 'E' in END.

Press '<' (this changes the direction to
backward).

Press 'D'.

Press <return><return>. After pressing
<{return> once, the cursor moves to the
position in front of the 'W' in WRITELN,
and "WRITELN("TO BE.');" disappears. After
the second return, the cursc: appears before
the 'W' in WRITE with that line gone.

Now press <etx>. After deletion, the
program appears as shown in Figure 4-7.

0100101:04A

Screen-Oriented Editor: D(elete

The two deleted lines have been stored in the |
copy buffer, and the cursor has returned to the

anchor position. If you wish, you may now use |
Clopy to copy the two deleted lines to any

other place in the file.

PROGRAM STRING2;
BEGIN
WRITE ('TOO WISE ');
WRITELN('TO BE.')
END.

Figure 4-6. D(elete Example A

PROGRAM STRING2:
BEGIN
END.

Figure 4-7. D(elete Example B

0100101:04A 4-27

Sereen-Oriented Editor: F(ind

F(ind
On the menu: F(ind
Repeat factors are allowed.

To use the F(ind command, press 'F' from the
E(dit menu. The system will display one of the
following prompts (depending upon how T(oken
definition is set in S(et E(nvironment):

>Find[n]l: L(it <target> =>
>Find(n]l: T(ok <target> =>

(Where 'n' is the repeat factor given before
pressing 'F'; this number is 1 if you gave no
repeat factor.)

The F(ind command locates the nth occurrence
of the <target> string, starting from the cursor
position and moving in the global direction
(shown by the arrow at the beginning of the
“menu). The cursor stops at the position
immediately after this occurrence.

To search in the token or the literal mode,
press the appropriate character (either 'L' or
'T', respectively), before entering the target
string.

4-28 0100101:04A

Scereen-Oriented Editor: F(ind

If the string doesn't occur within the text file
between the cursor and the end or beginning of
the file (depending on global direction), the
system displays the following message.

ERROR: Pattern not in the file. Please press <spacebar> to continue.

The following paragraphs show how to use the
F(ind command.

In the STRING1 program (see Figure 4-8), with
the cursor at the first 'P' in 'PROGRAM
STRING1', press 'F'. When the prompt appears,
enter 'WRITE'. Single quote marks must be
entered. The prompt with your response is
shown in the following listing.

>Find(1): L(it <target> =>'WRITE'

Immediately, the cursor jumps to the character
following the 'E' in the first '"WRITE'.

In the STRING1 program with the cursor on
the 'E' in 'END.', enter '<3F' (don't include
single quotes). This entry finds the third
occurrence of the pattern in the reverse
direction. When the menu appears, enter
'"/WRITELN/'. The menu with your response is
shown in the following listing.

<Find(3]): L(it <target> =>/WRITELN/

0100101:04A 4-29

Scereen-Oriented Editor: F(ind

4-30

The cursor will move to a position immediately
after the 'N' in WRITELN.

On the first find, enter 'F/WRITE/'. This
locates the first '"WRITE'. Now enter 'FS'.
The cursor appears after the second WRITE.

PROGRAM STRINGI1;

BEGIN
WRITE('TOO WISE ');
WRITE('YOU ARE');
WRITELN(',');
WRITELN('TOO WISE ');
WRITELN('YOU BE.')

END.

Figure 4-8. F(ind Example

0100101:04A

Sereen-Oriented Editor: I(nsert

Insert

On the menu: I(nsert
Repeat factors aren't allowed.

To select the I(nsert command, press 'I' from
the E(dit menu. The system then displays the
following menu.

>Insert: Text {<bs> a char, a linel [<etx> accepts, <esc> escapes)

Characters are entered into the text file as
they are pressed, starting from the position of
the cursor. This includes the character
<{return>. Nonprinting characters are echoed
with the nonprinting character symbol (usually
a '?'; this can be changed by using SETUP).
To make corrections while still in I(nsert, use
<backspace> (<bs>) to remove one character at
a time or <rubout> () to remove an entire
line. Backspacing past the beginning of the
insertion causes the system to display an error
message.

Create the text file with the I(nsert command,
using the modes selected with the S(et
E(nvironment commands. Use S(et E(nvironment
for selecting the auto-indent and the filling
modes.

0100101:04A 4-31

Sereen-Oriented Ecitor: I(nsert

4-32

Using Auto-Indent

If auto-indent is true, a <return> causes the
cursor to start the next line with an
indentation equal to the indentation of the
line above it. If auto-indent is false, a
<return> returns the cursor to the first
position of the next line.

Using Filling

If filling is true, the editor forces all
insertions to be between the right and left
margins. It does this by automatically
inserting returns between words whenever the
right margin would have been exceeded and
by indenting to the left margin whenever a
new line is started. The editor considers
anything to be a word that is between two
spaces or between a space and a hyphen.

Pressing two returns in succession creates a
new paragraph. In other words, a paragraph
is a block of text delimited by blank lines
(or command lines (see S(et), or the beginning
or end of the text file). The first line of a
paragraph may be indented differently than
the remaining text (see S(et E(nvironment).

0100101:04A

Screen-Oriented Editor: I(nsert

If both auto-indent and filling are true,
auto-indent controls the left-margin, while
filling controls the right-margin. You may
change the level of indentation by using the
{space> and <backspace> keys immediately
after a <return>.

Example 1: With auto-indent true, the
following sequence creates the indentation
shown in Figure 4-9.

'ONE'<return>
<space>sispace>'TWO'<return>'
THREE'<return>
<backspace>'FOUR"'

ONE original indentation
TWO indentation changed by «space><space>
THREE <return® causes auto-indentation to level of line above
FOUR <backspace> changes indentation from level of line above

Figure 4-9. Indentation Example

Example 2: With filling true (and auto-indent
false) the following sequence creates the
indentation shown in Figure 4-10.

'ONCE UPON A TIME THERE- WERE'.

ONCE UPON A Auto-returned when next word would exceed margin
TIME THERE- Auto-returned at hyphen
WERE

Level of left margin

Figure 4-10. Auto-Indent Example

0100101:04A 4-33

Screen-Oriented Editor: I(nsert

4-34

You can force the cursor to the left margin
of the screen by entering <control-Q>
(ASCII DC1). On some machines or
terminals, CTRL-Q is the prefix character
which requires you to press it twice to
achieve the desired effect.

Filling also causes the editor to adjust the
margins on the portion of the paragraph
following the insertion. This adjustment
doesn't affect any line beginning with the
command character (see S(et), and such a
line terminates a paragraph.

You may readjust a filled paragraph by using
the M(argin command but only if F(illing is
TRUE and Auto-indent is FALSE. This may
be very useful if you wish to change the
margins of a document (which may be done
with S(et E(nvironment).

The global direction doesn't affect I(nsert,
but is indicated by the direction of the
arrow on the menu.

If an insertion is made and accepted, that
insertion is available for use in C(opy.
However, if <ese> is used, there is no string
available for C(opy.

0100101:04A

Screen-Oriented Editor: J(ump

J(ump
On the menu: J(ump
Repeat factors aren't allowed.

Upon entering J(ump, the following menu
‘ appears:

‘ >JUMP: B(eginning E(nd M(arker <esc>

Pressing 'B' (or 'E') moves the cursor to the
beginning (or the end) of the file. Pressing '™’
displays the following prompt:

Jump to what marker?

Markers are user-defined names for positions in
the text file. See the M(arkers command of
the S(et command for more information.

0100101:04A 4-35

Screen-Oriented Editor: K(olumn

K(olumn

4-36

On the menu: K(ol
Repeat factors aren't allowed.

K(olumn displays the following menu:

K (olumn: <vector keys> {<etx>, <esc> CURRENT line}

You may move all of a line which lies to the
right of the cursor to the left by using the
{left-arrow> or to the right by using the
<{right-arrow>. Using the <up-arrow> or
<down-arrow> applies the same column
adjustment to the line above or below. Press
<{etx> to leave K(olumn. You can use <esc>,
but it only rejects the changes made most
recently to the current line.

NOTE: When using K(olumn, each <left-arrow>
deletes one character at the cursor. It's easy
to do this and any characters deleted aren't
saved in the copy buffer as in D(elete, so be
careful when using K(olumn.

0100101:04A

Screen-Oriented Editor: M(argin

M(argin
On the menu: M(argin
Repeat factors aren't allowed.

M(argin realigns the paragraph (where the
cursor is located) to fit within the current
margins. All of the lines within the paragraph
are justified to the left margin, except the
first line, which is justified to the paragraph
margin. You can set all these global margins
with the S(et E(nvironment command.

The cursor may be located anywhere within the
paragraph when you press 'M'.

Figures 4-11 and 4-12 show margins settings
and an example of a paragraph that uses those
settings.

Left-margin, 0
Right-margin, 40
Paragraph-margin, 8

This quarter, the equipment is
different, the course materials are
substantially different, and the course
organization is different from previous
quarters. You will be misled 1f you
depend upon a friend who took the course
previously to orient you to the course.

Figure 4-11. M(argin Example A

0100101:04A 4-37

Screen-Oriented Editor: M(argin

Left-margin, 8
Right-margin, 40
Paragraph-margin, 0

This quarter, the equipment is
different, the course materials
are substantially different, and
the course organization is
different from previous quarters.
You will be misled if you depend
upon a friend who took the course
previously to orient you tc the
course.

Figure 4-12. M(argin Example B

A paragraph is any block of text delimited by
blank lines, lines beginning with a command
character or the beginning or end of the text
file. If the text file or the paragraph is
especially long, the system may remain blank
for several seconds while M(argin completes its
work. When M(argin finishes, the system
redisplays the paragraph. M(argin never splits
a word; it breaks lines at spaces or at
hyphens.

4-38 0100101:04A

Screen-Oriented Editor: M(argin

Command Characters

M(argin won't affect a line if the line starts
with a command character. The command
character must be the first nonblank
character in the line. M(argin treats lines
beginning with the command character as
blank lines. The command character itself is
any character so designated using the S(et
E(nvironment command.

0100101:04A 4-39

Screen-Oriented Editor: P(age

P(age

4-40

On the menu: P(age
Repeat factors are allowed.

Moves the cursor one screen in the global
direction. If a repeat factor is used, several
screens are traversed. The cursor remains on
the same line on the screen, but is moved to
the start of the line.

0100101:04A

Screen-Oriented Editor: Q(uit

Q(uit
On the menu: Q(uit
Repeat factors aren't allowed.

Q(uit displays the following menu:

>Quit:

U(pdate the work file and leave

E(xit without updating

R(eturn to the editor without updating
W(rite to a file name and return

Select one of the four options by pressing 'U’,
tEY 'R, or ('W!'. All other characters are
ignored.

U(pdate:

Stores the file just modified as
SYSTEM.WRK.TEXT; then leaves the editor.
SYSTEM.WRK.TEXT is the text portion of
the work file.

E(xit:

This leaves the editor immediately. Any
modifications made since entering the editor
aren't recorded on disk. All editing during
the session is irrecoverably lost, unless you
have already used the W(rite command of
Q(uit to save the work.

0100101:04A 4-41

Screen-Oriented Editor: Q(uit

4-42

R(eturn:

Returns to the editor without updating. The
cursor is returned to the exact place in the
file it occupied when 'Q' was pressed. This
command is frequently wused after
unintentionally pressing 'Q'. It is also useful
when yuu wish to make a backup to your file
in the middle of a session with the editor.

W(rite:
This command puts up a further menu:

>Quit:
Name of output file (<cr> to return)=-->

The file may now be given any proper name.
If it is written to the name of an existing
file, the new copy replaces the old file.
Use '$' to write to the same name that the
file had when you entered the editor.
Alternatively, you can abort, Q(uit, at this
point by pressing <return> instead of entering
a file name; you will return to the editor.
If the file is written to disk, the editor
displays the following:

>Quit

WELIEingee.c.

Your file is 1978 bytes long.

Do you want to E(xit from or R(eturn to the editor?

0100101:04A

Screen-Oriented Editor: R(eplace

R(eplace
On the menu: R(ple
Repeat factors are allowed.

Upon entering R(eplace, one of the two menus
in the following example appears, depending on
the global mode. In this example, a repeat
factor of four is assumed.

>Replacel4]):L(it V(fy <targ><sub> =>

>Replace[4]:T(ok V(fy <targ><sub> =>

R(eplace finds the target string (<targ>)
exactly as F(ind would, and replaces it with
the substitution string (<sub>).

The V(erify command ('V(fy') allows you to
examine each <targ> string found in the text
so you can decide if it is to be replaced. To
use this command, press 'V' before pressing the
target string.

The following menu appears whenever R(eplace
has found the <targ> pattern in the file and
verification has been requested:

>Replace: <esc> aborts, 'R' replaces, ' ' doesn't

0100101:04A 4-43

Screen-Oriented Editor: R(eplace

Pressing 'R' at this point causes the
replacement to take place, and the next target
to be sought. Pressing <space> causes the
next occurrence of the target to be sought.
At any point, an <esc> aborts the R(eplace.

With V(erify, this process continues until the
repeat factor is exhausted or until the target
string can no longer be found.

With R(eplace, if the target string can't be
found, the following menu appears.

ERROR: Pattern not in the file. Please press <spacebar> to continue.

R(eplace places the cursor after the last string
that was replaced.

Example 1:
Enter 'RL/Low//High/' like this: °

>Replacell): L(it V(fy <targ> <sub> =>L/Low//High/

This command will change:

"LOle" to "Highly"

Literal is necessary because the string 'Low'
isn't a token, but part of the token 'Lowly'.

4-44 0100101:04A

Sereen-Oriented Editor: R(eplace

Example 2:

In the Token mode, R(eplace ignores spaces
between tokens when finding patterns to
replace. This example concerns the following
two lines.

WRITE(',');
WRITE(',"');

Enter '2R' from the E(dit menu. The system
then displays the following menu:

>Replacel2]: L(it V(fy <targ> <sub>

Enter /(',")/.LN. Immediately after entering the
last period, the following two lines replace the
previously listed lines:

WRITELN;
WRITELN;

0100101:04A 4-45

Sereen-Oriented Editor: S(et

S(et

4-46

On the menu: S(et
Repeat factors aren't allowed.

Upon entering S(et, the following menu appears:

>Set: M(arker E(nvironment <esc>

S(et E(nvironment

You can set the editing environment to a
mode that is most convenient for word
processing or more structured kinds of
editing (such as programming text or special
tables). When in S(et, press 'E' for
E(nvironment; the following display then
appears:

>Environment: {options} <spacebar> to leave
A(uto indent True
F(illing False

L(eft margin 9
R(ight margin 70
P(ara margin 9

C (ommand ch .
S(et tabstops
T(cken def True

3152 bytes used, 29612 available.

Editing: SCHEDULE.TEXT

Created March 10, 1982; last updated March 24, 1982 (revision 10)
Editor Version [IV.1 f4].

0100101:04A

Sereen-Oriented Editor: S(et

The line that begins 'Editing:' identifies the
file currently being edited. If the file has
just been created but not named, the line
reads:

Editing: wunnamed

By pressing the appropriate letter, you may
change any or all of the options.

E(nvironment Options
A(uto indent:

Auto-indent affects only insertions. Refer to
the section on I(nsert. Auto-indent is set to
true (turned on) by entering 'AT' and to
false (turned off) by entering 'AF'.

F(illing:

Filling affects I(nsert and M(argin. (Refer to
those sections.) Filling is set to true (turned
on) by entering 'FT' and to false by entering
Tr.

0100101:04A 4-47

Screen-Oriented Editor: S(et

4-48

L(eft margin, R(ight margin, P(ara margin:

When Filling is true, the margins set in
E(nvironment are the margins that affect
I(nsert and M(argin. They also affect the
Center and justifying commands in A(djust.
To set & margin, press 'L', ‘R!', or 'B!,
followed by a positive integer and a <space>.
The positive integer entered replaces the
previous value. Margin values must be four
digits or less.

C(ommand ch:

The command character (C(ommand ch:)
affects the M(argin command and the Filling
option in I(nsert. (Refer to those sections.)
Change the command character by pressing
'C', followed by any character. For
example, entering 'C*' changes the command
character to '*'. This change is reflected in
the menu. The command character was
principally designed as a convenience for
using text formatting programs whose
commands are indicated by a special
character at the beginning of a line.

0100101:04A

Screen-Oriented Editor: S(et

S(et Tabstops:

The editor allows you to set tab stops.
From the E(dit command menu, press S(et,
E(nvironment, and then press S(et tabstops.
The system will display the following
interface menu.

Set tabs: <right, left vectors> Cl(ol% T(oggle tab <etx>

b il Ol iSO Bl S Dl Dl R o s
Column#l

The cursor will start at position one in the
line of Ts and dashes (-). The line
'Column#1' indicates the positon of the
cursor. To set or remove a tab, move the
cursor to the desired location, using the
right or left vector keys; or press 'C' and
enter the desired column number. Press 'T'
to insert a tab or delete a tab.

Pressing 'T' changes the indicator from a
dash to T; pressing 'T' again in the same
column changes the 'T' back to a dash. The
system displays the current column number of
the current cursor position and updates it
each time you press a right/left vector key
or 'C(olumn' command.

0100101:04A 4-49

Scereen-Oriented Editor: S(et

T(oken def:

This option affects F(ind and R(eplace. Set
Token to true by entering 'TT' and to false
by entering 'TF'. If Token is true, Token is
the default; and if Token is false, Literal is
the default.

- S(et M(arker

4-50

When editing, it is particularly convenient to
be able to jump directly to certain places in
a long file by using markers set in the
desired places. Once a marker is set, you
can jump to it by using the M(arker command
in J(ump.

Move the cursor to the desired marker
position, enter S(et, and press 'M' for
M(arker. The following prompt appears:

Set what marker?

You may give markers names of up to eight
characters followed by a <return>. The
marker is entered at the position of the
cursor in the text. If you use the name of
a marker that already exists, it will be
repositioned.

0100101:04A

Sereen-Oriented Editor: S(et

Twenty markers are allowed in a file at any
one time. You will receive the following
display if you try to set more than 20
markers:

Marker ovflw. Which one to replace? (Type in the letter or <sp>

a) namel b) name2 c) name3 d) named
e) name5 f) nameé6 g) name? h) name8
1) name9 J) namel0 k) namell 1) namel2
m) namel3 n) nameld o) namel5 p) namelé
q) namel? r) namels8 s) namel9 t) name20

Choose a letter "a" through "t"; that space
will now be available for use in setting the
desired marker.

0100101:04A 4-51

Screen-Oriented Editor: V(erify

V(erify

4-52

On the menu: V(erify
Repeat factors aren't allowed.

The current window is redisplayed, and the
cursor is repositioned at the center line of
text on the screen.

0100101:04A

Screen-Oriented Editor: X(change

X(change
On the menu: X(change
Repeat factors aren't allowed.

Upon entering X(change, the following menu
appears:

>eXchange: TEXT {<bs> a char} [<esc> escapes; <ext> accepts]

Starting from the position, X(change replaces
characters in the file with characters you
enter.

For example, in the file in Figure 4-13, with
the cursor at the 'W' in WISE, entering 'XSM'
replaces the 'W' with the 'S' and then the '
with the 'M'. This leaves the line, as shown in
Figure 4-14, with the cursor before the second
st

WRITE ('"TOO wISE ');

Figure 4-13. X(change Example A

WRITE('TOO SMgE ');

Figure 4-14. X(change Example B

0100101:04A 4-53

Sereen-Oriented Editor: X(change

4-54

The <etx> Kkey accepts the actions of the
eX(change, while the <esc> key leaves the
command with no changes recorded in only the
last line altered.

The X(change command ignores the global
direction; exchanges are always forward.

You may use the arrow keys, <backspace>,
<{return>, and <tab> to move the cursor about
the screen. X(changes move forward from
wherever the cursor is moved to.

While in X(change, the terminal's KEY TO
INSERT CHARACTER inserts one space at the
cursor's location, and the KEY TO DELETE
CHARACTER deletes a single character at the
cursor's location. These keys may be specified
with SETUP.

0100101:04A

Screen-Oriented Editor: Z(ap

Z(ap
On the menu: Z(ap
Repeat factors are allowed.

Z(ap deletes all text between the start of what
was previously found, replaced, or inserted and
the current position of the cursor. Use this
command immediately after a F(ind, R(eplace,
or Insert. If more than 80 characters are
being zapped, the editor asks for verification.

The position of the cursor after the previous
F(ind, R(eplace, or I(nsert is called the equal
mark. Pressing '=' places the cursor there.

Whatever you deleted by using the Z(ap
command is available for use with C(opy, unless
there isn't enough room in the copy buffer. If
this is the case, the editor then asks if you
want to Z(ap anyway.

Z(ap isn't allowed after certain commands that
might scramble the buffer. These commands
are: A(djust, D(elete, K(olumn, and M(argin.

0100101:04A 4-55

CHAPTER 5

UTILITY PROGRAMS

Utility Programs

INTRODUCTION

This chapter covers several utility programs that
will help you use the p-System. The utility
programs are code files that you X(ecute to provide
such services as:

® Printing text files.
® Recovering lost files.

® Configuring the p-System for your particular
keyboard and terminal.

® Making programs execute more quickly.
@ Debugging programs.

® Showing you the internal details of files.

The utilities described in this chapter fall into the
first four categories. The UCSD p-System Program
Development User Guide describes several utilities
which fit in the last two categories.

0100101:05A 5-3

Utility Programs

PRINT

Introduction

The PRINT utility provides a simple way for
p-System users to print text files. The
screen-oriented editors in the p-System make it
easy to create and manipulate text (including
documents, memos and programs). The PRINT
utility makes it just as easy to produce printed
versions of such text. PRINT can break a
document into pages, and put headings on each,
including the page number. In addition, there are
a variety of options for controlling the line
spacing and vertical margins of the printed
document.

PRINT complements the other two principal
mechanisms within the p-System for printing text
files (the T(ransfer operation in the F(iler and
the Print Spooler). Neither of those mechanisms
provides any formatting support (such as inserting
page breaks). The big advantage of using the
Print Spooler is that printing can go on in
parallel with other operations, such as text
editing. This can be a big time saver. PRINT
can be used with the Spooler because PRINT's
output can be sent to a disk file. The Spooler
can then be used to print that formatted file.

5-4 0100101:05A

Utility Programs

PRINT has been designed to work with a wide
variety of printers. It makes minimal assumptions
about special control features they may have, and
can be used with either continuous forms or
manual single sheet loading.

The following section describes the simplest uses
of PRINT. You may never need to know more.
If you do, read the rest of this section, which
provides a systematic description of all of
PRINT's facilities.

Simple Uses of PRINT

To invoke PRINT, simply X(ecute it from the
Command menu of the p-System. PRINT
immediately shows & menu of the available
commands. Some of these cause immediate action
by the program (such as printing a document);
others allow you to set up configuration
parameters that will guide a subsequent printing
operation (such as what disk file to print).

Most of these configuration parameters are
initially set up by PRINT for the most common
printing situations. In particular, we assume:

® That you are using continuous paper in your
printer (rather than single sheets);

® That each page can hold at least 66 lines of

printing (or 11l-inch paper with 6 lines per
inch); and

0100101:05A 5=

Utility Programs

If

That your printer advances the paper to a
new page when the p-System sends a ASCII
"form feed" control character to it.

these built-in choices meet your needs, using

PRINT is very simple, and consists of four steps
(once you have PRINT running):

1.

2.

Enter the name of the file to be printed,
using the I(nput option on the menu.

Use G(o to start the printing. After a file is
printed, use I(nput to select another file and
G(o again to print it.

If you need to cause a page advance on the
printer to tear off the printout(s) you've made,
A(dvance should do the trick.

Finally, when you are done with a printing
session, use Q(uit to leave PRINT.

If the printouts produced by this process aren't
what you'd like, or if some of the assumptions
above don't apply in your situation, read the rest
of this section to discover how PRINT can be
configured to serve your needs better.

0100101:05A

Utility Programs

Interacting with PRINT

Just as in the rest of the p-System, you interact
with PRINT by making choices from a menu of
options. There are four kinds of options. They
may:

1. Cause immediate actions. A(dvance, for
instance, moves the paper in the printer to
the next page.

2. Prompt you to enter a sequence of characters,
followed by a <return>. These characters are
a file name, in the case of I(nput.

3. Request that you enter an integer number.
This number must be positive and have four
digits or fewer. This style of interaction is
used is when you choose the initial page
number for your heading lines.

4. Give you a Yes or No choice. Respond by
pressing 'Y' or 'N'. This style of response is
used with the D(ouble space option, for
instance.

There is also the '7' option whieh displays
information about how to use the PRINT utility.

0100101:05A 5-7

Utility Programs

Other than the principal menu of commands,
whieh occupies most of your display screen,
PRINT does most of its communieation with you
through the top line of the screen. Once you
have selected an option, prompts appear on this
line to direct you. Error messages are also
shown on this line and are usually left there
until you press <space> to indicate that you have
noticed the message.

Controlling the Layout of Pages

PRINT allows you to specify the P(age length
you are using and the sizes of the T(op and
B(ottom margins that you desire. All of these
are specified in units of print lines. At the top
of a page, after T(op margin lines of empty
space, a heading line is printed (which may have
the date and page number, for instance). A
blank line follows the heading. Here is a
diagram of a page, with these parameters shown:

Top of page

T{op margin
blank lines

Header line
Blank line
First text line

Text

Last text line

B(ottom margin
blank lines

Bottom of page

5~-8 0100101:05A

Utility Programs

PRINT doesn't attempt to control the horizontal
placement of the text it processes. Lines are
transferred to the printer exactly as they appear
in the file being printed.

The standard header line contains a page number,
the name of the file being printed, and the
current date (as maintained by the p-System).
The format of this line can be changed, as
described in the next section. Here is an
example header line in the standard format:

Page 3. File is "MYVOL:MYFILE". Printed on January 3, 1983.

The initial page number for a file is ordinarily 1.
If you want your page numbers to start
differently, use P(age number before printing your
file.

The D(ouble space and N(umbered lines options
can be used to control those aspects of your
printout's appearance.

The Content of Pages

As mentioned above, the normal operation of
PRINT is to transfer lines without change from
the file being printed to the printer.

0100101:05A 5-9

Utility Programs

There are two exceptions to this general
prineiple. First, if a line starts with the
command line flag character, it isn't printed.
Usually, this means it is a COMMAND line that
gives directions to PRINT. The two characters
after the flag are examined to see if they
correspond to a valid PRINT command. If they
do, the command is accepted by PRINT. If they
don't, the line is simply ignored. (You can place
comments in your text using this mechanism.)

The second exception is that a line may contain
the ESCAPE SEQUENCE flag. This character
can be anywhere in the line. As with the
commands, it is the characters after the escape
sequence flag which determine what happens. In
general, however, the escape sequence is replaced
by other text (for instance, the current page
number).

These two flag characters can be changed either
from the PRINT menu (using the E(scape and
C(ommand options) or by command lines embedded
in a file being printed.

Only the first two characters after the command
flag are significant. Additional characters are

ignored. (Therefore, '.JINCLUDE' and
'"INCREMENT' are both treated as include
commands,) Commands may be in either

uppercase or lowercase.

5-10 0100101:05A

Utility Programs

Commands may have parameters. The first
parameter must be separated from the command
name by one or more blank characters. All
parameters must be enclosed in quotes. Either
single quotes (') or double quotes (") may be
used, but toth ends of the parameter must be
marked by the same character (that is, "myfile"
or 'myfile’).

The commands available in PRINT are as follows:

INCLUDE This command has one parameter,
- which is a file name. Printing of
the current file is temporarily
suspended and the included file is
processed. When the end of the
included file is reached, processing
resumes on the principal file. The
included file can't itself contain
any INCLUDE commands. Page
numbering is continuous across
included files.

INCLUDE allows a large document
to be spread among several
p-System files, but still be printed
with a single PRINT operation.
For example:

.INCLUDE 'MYVOL:MYFILE'

0100101:05A 5-11

Utility Programs

PAGE

HEADING

5-12

This commarid has no parameters.
Its effect is to cause an immediate
page advance on the printer.

This command is useful when the
page breaks that are automatically
inserted by PRINT aren't the page
breaks that you want. For
example:

.PAGE

This command has one parameter,
which becomes the " new
specification of the header line
which is printed at the top of each
page. The header line can also be
changed from the PRINT menu.

You can use this command in a
document file to establish a page
heading for the printed version
that is specific to the document.
For example:

.header "My document—Page \page"

0100101:05A

COMMAND

ESCAPE

0100101:05A

Utility Programs

This command has one parameter, a
single character (which still must
be enclosed in quotes). The
character becomes the new
command line flag character.

This infrequently used command
allows you to choose the character
that introduces command lines.
For example:

.COMMAND '™'

This command is similar to
COMMAND, except that the
one-character parameter becomes
the new escape sequence flag.

Just as with the command flag, you
may want to change the escape
sequence flag if the standard one
conflicts with something in your
text file. For example:

.ESCAPE '!'

5-13

Utility Programs

END

5-14

This command has no parameters.
It indicates that no more text
should be taken from the current
file. If the current file is an
included file, PRINT returns to the
principal file. If the current file
is the principal file, printing is
discontinued.

END is convenient for EDVANCE
users. The EDVANCE editor
allows you to define special
function key macros by using text
inside of the file itself. Also,
EDVANCE allows you to keep an
automatic log of update information
within a text file. Furthermore,
whether or not you used
EDVANCE, you may wish to have
an area within your files where
you keep miscellaneous informaton
that you don't want to be printed
along with the main portion of the
file. Any of this sort of material
can be placed after an END
command, PRINT will ignore it.
For example:

.end

Here you could have some
special key definitions for
EDVANCE.

0100101:05A

Utility Programs

All characters are significant in escape
sequences. There are three standard ones, which
are translated as follows when found in a line
about to be printed:

PAGE The escape sequence is replaced by the
current page number.

FILE The input file name (either the main
file, or the include file, whichever is
active).

DATE The escape sequences is replaced by
the current p-System date, in the form
"January 1, 1983."

A principal application of these escape
sequences is in the header line which is
printed at the top of each page. You
can change the format of that line
either in the PRINT menu or with the
".header" command line in the file being
printed. For example, the header

Memorandum of Understanding(\date)—Page \page

would produce printed heading lines like
the following:

Memorandum of Understanding (January 13, 1983)—Page 43

Memorandum of Understanding (May 18, 1983)—Page 7

0100101:05A 5-15

Utility Programs

The provision for changing the header line within
the file means that you can have different
headers on different pages. It would be easy,
for instance, to have a blank header on the first
page and some specific header on subsequent
pages.

Output Methods

PRINT directs its output by default to the device
PRINTER:. You can easily change this
definition, however, from the PRINT menu. You
could, for instance, set the output file to be a
disk file or a serial communications port. The
disk file possibility can be quite useful since it
allows you to store the paginated output of
PRINT for later transfer to a printer. If the
Print Spooler is used for that transfer, you can
take advantage of the Spooler's ability to overlap
printing with other p-System operations,
particularly text editing.

PRINT is intended to work with printers which
use continuous forms, but also with printers
which must be loaded with each individual sheet
of paper. The S(top before each page option in
the PRINT menu controls which kind of printer is
assumed. If the single-sheet variety is selected,
you are prompted to load the printer before each
page is printed.

5-16 0100101:05A

Utility Programs

On many single-sheet-oriented printers, the paper
must be inserted about an inch past the printing
mechanism so that pinch rollers can guide it, If
you're using such a printer, you may want to
reduce the P(age size and possibly change the
T(op margin, as well. For instance, if your
printer prints 6 lines per inch and you're using
standard 11-inch paper, you might reduce the
P(age size from 66 lines to 60 lines.

Most printers can interpret the ASCII form feed
character to mean "advance the paper to the
next page." If your printer can't turn off the
U(se forn feed option, the form feed character
will be replaced by the printing of a series of
empty lines. The effect will be the same as a
form feed, as long as PRINT's page size and
margin options are properly set.

PRINT Invocation Shortcuts

If the standard settings of the PRINT options
suit your needs most of the time, the use of
PRINT is simple and convenient. If, however,
you generally need to change one or more of the
options to do your printing, PRINT could be more
awkward to use. The M(ake script option has
been included to address this situation.

This option produces a script file that will
change the options from their defaults on entry
to PRINT to the values that exist at the time
that M(ake script is invoked. You can also
include in this script a command that invokes
PRINT itself, thus reducing your keystrokes even
further.

0100101:05A 5-17

Utility Programs

When you select M(ake script, you are first asked
to name the script file you want produced. If
you want this to be a .TEXT file, you must
include the suffix in the title you supply. The
advantage of a .TEXT file is that it can be
easily examined or modified by a p-System editor.
A disadvantage is that it is at least four blocks
long, whereas a typical nontext file script is only
one block long.

The next prompt asks you to enter the name by
which PRINT should be invoked. Your response
is used as the response to an X(ecute prompt, so
whatever you would use there is appropriate, If
you provide an empty response to this prompt
(that is, an immediate <return>), the program
invocation step is left out of the generated
seript altogether. \

After this second prompt, PRINT produces the
script.

Here is an example of M(ake script, along with a
subsequent invocation of PRINT,

Enter name of script file: MYPRINT
Enter name for invoking print: *PRINT

Execute what file? i=MYPRINT

5-18 0100101:05A

Utility Programs

In the first line above, the script file is dubbed
MYPRINT (with no suffix). The second line
indicates that the PRINT program is to be found
on the system disk, with the indicated file name.
The third line is the invocation of PRINT via the
newly created script. The script will execute
the program and set all the options as they
existed at the time the script was created.

If the second response above had been empty,
then an equivalent X(ecute string would have
been '*PRINT i=MYPRINT".

Summary of Menu Items

By selecting any of the options below, you can:
I(nput Choose the file to be printed.

O(utput Choose the destination of the
print operation,

Glo Print the input file on the
output, according to the current
option settings.

A(dvance Skip to the next page on the
output.
M(ake script Build a script file which will

invoke PRINT with the current
option settings.

0100101:05A 5-19

Utility Programs

Qluit

D(ouble space

N(umber

S(top

U(se ASCII FF

F(irst page

T(op margin

B(ottom margin

P(age size

E(scape

5-20

Leave PR_INT.

Select single- or double-spaced
output.

Cause each line to be preceded
by its sequence for the current

page.

Specify whether single sheet
loading or continuous forms are
assumed by PRINT.

Specify whether the form feed
character or a sequence of
empty lines is used to separate
output pages.

Specify the page number on the
first page of a document.

Specify the number of blank
lines between the top of the
page and the header line.

Specify the number of blank
lines between the last line of
text and the bottom of the

page.

Specify the number of lines per
page.

Choose the character which
starts an escape sequence,

0100101:05A

C(ommand

H(eader

Utility Programs

Choose the character which
starts a command line.

Specify the contents of the
heading line at the top of each
printed page.

Summary of Command Lines

By using the following command, you can:

INCLUDE

PAGE

HEADING

COMMAND

ESCAPE

END

0100101:05A

Insert an additional file into the
document being printed in place of
the include command.

Cause an immediate page break.

Specify the contents of the heading
for subsequent pages.

Change the command line flag
character.

Change the escape sequence flag
character.

Terminate printing the current text
file.

o-21

Utility Programs

Summary of Escape Sequences

When any of the following escape sequences
occur, the indicated text is substituted:

PAGE The current page number.
FILE The current input file name.
DATE The current calendar date as

maintained by the p-System.

5-22 0100101:05A

Utility Programs

PRINT SPOOLER

The print spooler is a program that allows you to
queue and print files concurrently with the normal
execution of the p-System (while the console is
waiting for input from the keyboard). The queue it
creates is a file called *SYSTEM.SPOOLER, and the
files you wish to print must reside on volumes that
are on-line or an error will oceur.

When SPOOLER is X(ecuted, the following menu
appears:

Spool: P(rint, D(elete, L(ist, S(uspend, R{esume, A(bort, C(lear, Q(uit

The following paragraphs define the menu options:

P(rint Prompts for the name of a file to be
printed. This name is then added to
the queue. If SYSTEM.SPOOLER
doesn't already exist, it is created. In
the simplest case, P(rint may be used
to send a single file to the printer.
Up to 21 files may be placed in the
print queue.

D(elete Prompts for a file name to be taken
out ot the print queue. All
occurrences of that file name are
taken out of the queue.

L(ist Displays the files currently in the
queue,

0100101:05A 5-23

Utility Programs

S(uspend Temporarily halts printing of the
current file.

R(esume Continues printing the current file
after a S(uspend. R(esume also starts
printing the next file in the queue
after an error or an A(bort.

A(bort Permanently stops the printing process
of the current file and takes it out of
the queue.

C(lear Deletes all file names from the queue.

Q(uit Exits the spooler utility and starts

transferring files to the printer.

If an error occurs (that is, a nonexistent file is
specified in the queue), the error message appears
only when the p-System is at the Command menu.
If necessary, the spooler waits until you return to
the outer level.

Program output to the printer may run concurrently
with spooled output. The spooler finishes the
current file and then turns the printer over to your
program. (Your program is suspended while it waits
for the printer.) Your program should only do
Pascal (or other high-level) writes to the printer.
If your program does printer output using unitwrite,
the output is sent immediately and appears
randomly interspersed with the spooler output.

5-24 0100101:05A

Utility Programs

The utility SPOOLER.CODE uses the operating
system unit SPOOLOPS. Within this unit is a
process called spooltask. Spooltask is started at
boot time and runs concurrently with the rest of
the p-System. The print spooler automatically
restarts at boot time if *SYSTEM.SPOOLER isn't
empty. When the file *SYSTEM.SPOOLER exists,
spooltask prints the files that it names. Spooltask
runs as a background to the main operations of the
p-System.

*SPOOLER.CODE interfaces with SPOOLOPS and
uses routines within it to generate and alter the
print queue within *SYSTEM.SPOOLER.

To restart the print spooling process if
SPOOLER.CODE is executing when the system goes
down, reboot the system, press X(ecute from the
Command menu, enter *SPOOLER.CODE, and press
<return>. Then press R(esume.

0100101:05A 5-25

Utility Programs

QUICKSTART

Introduction

The QUICKSTART utility can be used to make
programs start more quickly. A program's startup
time is the amount of elapsed time between the
moment the invocation of the program is
requested and the moment the execution of the
program actually commences. During this startup
time the p-System is building the execution
environment for the program.

A program's execution environment is a network
of p-System data structures, together with the
areas of memory required by the program for its
data. Each compilation unit contained within the
program has a table in the execution environment
which it uses during its execution to refer to
other compilation units.

The QUICKSTART utility constructs a description
of the execution environment for a program and
generates a code file for the program which
contains this execution environment description.
The operating system detects the presence of
execution environment descriptions within program
code files and attempts to reconstruct the
required execution environment from such
descriptions when the programs are invoked. For
large programs built out of a collection of
separately compiled p-System units, this
reconstruction process is considerably faster than
the normal execution environment construction
process.

5-26 0100101:05A

Utility Programs

After QUICKSTART has been used on a code
file, that code file may be invoked with the
X(ecute command as usual.

The reduction in invocation time for a
quickstarted program is achieved by
reconstructing the program's execution
environment from the description in the code file
instead of building the environment from secratch
each time the program is invoked. Except for
the difference in invovation time, the execution
of a quickstarted program is identical to that of
the original program.

When & quickstarted program is executed, the
system first inspects the program code file to
determine if an execution environment description
is present within the program code to reconstruct
the execution environment required by the
program from the description in the code file, If
the code file doesn't contain an environment
description, or the environment desecription
contained within the code file is obsolete, the
system attempts to build the environment for the
program in the usual fashion,

0100101:05A 5-27

Utility Programs

QUICKSTART Utility Operation

This section describes the operation of the
QUICKSTART utility program.

System Environment Preparation

5-28

As the first step in using the QUICKSTART
utility, you must set up the system environment
for normal execution of the program. This
includes making sure that the proper volumes
are on-line and that any required library files
are available. Note that the QUICKSTART
utility uses the same components for locating
the units which are referenced by the program
it is processing.

QUICKSTART provides a set of toggle options
that control the manner in which the
quickstarting of a program is accomplished.
The settings of these options can influence the
way in which you set up the system
environment prior to running QUICKSTART.
These toggle options are discussed next.

C(opy Toggle Option

The C(opy toggle option determines whether
the output of QUICKSTART is a modified
version of the original code file, or a new
code file.

0100101:05A

Utility Programs

In its default setting, the C(opy toggle
option is off. This causes QUICKSTART to
modify the original code file. The new
execution environment description is either
appended to the end of the code file, or will
be written on top of an old description
already present. Using QUICKSTART in this
manner avoids the rather slow process of
making a copy of the original file; however,
there is a chance that the insertion of the
new execution environment description will
fail due to insufficient disk space at the end
of the code file. You should make sure that
a section of unused disk space follows the
code file. The number of unused blocks
which are required depends on the size and
complexity of the program.

When the C(opy toggle option is on, a new
code file is created by QUICKSTART and
the execution environment is appended to the
end of that file. Any previous environment
description embedded in the code file is
discarded. This method of using
QUICKSTART is somewhat slower. But it is
safe and more likely to insure that the size
of the code file can be extended if
necessary to install the new environment
description. In order to use QUICKSTART in
this manner, there must be enough disk space
for a copy of the entire code file on one of
the on- line volumes.

0100101:05A 5-29

Utility Programs

5-30

L(ibrary Copy Toggle Option

QUICKSTART installs a checksum part
number into the library code files which are
used by the program, The checksum is
utilized to detect when an environment
description has become obsolete due to a
change in one of those library code files. A
new checksum is only inserted into a library
code file if that file lacks a valid checksum.
Because of this, it must be possible for
QUICKSTART to write to the volumes
containing library code files without valid
checksums.

With some p-System installations, a
referenced library code file may reside on a
RAM disk rather than a physical disk. When
QUICKSTART updates such a code file, the
updated information will be lost the next
time the computer is powered off. As an
aid to wusers who use RAM disk, the
QUICKSTART utility has another toggle
option called L(ibrary copy. When the
L(ibrary copy toggle option is on,
QUICKSTART first updates the original copy
of a referenced library code file with a new
checksum, and then asks you if the updated
library code file ~ontents should be copied to
another file. Thus this facility can be used
to save the updated library code files on a
physical disk.

0100101:05A

Utility Programs

M(essages Toggle Option

The QUICKSTART utility has the capability
of writing detailed progress messages to the
console. These progress messages provide
you with the names and locations of the
compilation units which are being included
within the execution environment for the
program being quickstarted. In addition,
these messages advise you of the copying or
modification of code files. Most of the time
you won't require the large amount of
information provided by the progress
messages. The information can be useful,
however, when you are trying to diagnose
the cause of a malfunction in a program.
The QUICKSTART utility has a M(essages
toggle which controls whether or not
progress messages are displayed. The default
setting of the M(essages toggle option is
OFF, which results in the progress messages
being suppressed.

Using The QUICKSTART Utility

The QUICKSTART utility
(QUICKSTART.CODE), displays this menu:

Quickstart: P(rogram, S(ystem, C(opy, L(ibrary, M(essages, Q(uit
Toggle settings: Copy OFF, Library copy OFF, Messages OFF

0100101:05A 5-31

Utility Programs

The first line shows the set of commands
recognized by QUICKSTART. The second line
displays the current settings of the toggle
options. The toggle option settings shown
above are the default settings.

The C(opy, L(ibrary, and M(essages commands
cause the setting of the corresponding toggle
option to be changed. After you select one of
these commands, the appropriate toggle option
display is updated to reflect the change.

The P(rogram command is the command which
is used to initiate the process of quickstarting
a program. The operation of the P(rogram
command is described in the following section.

The S(ystem command directs the QUICKSTART
utility to build a description of the p-System
operating system environment into a new
system code file. This command is typically
used only by sophisticated p-System users who
are creating a new p-System operating system
code file. The operation of the S(ystem
command is basically the same as the operation
of the P(rogram command described in the
following section. The following section
contains a supplemental description of the
S(ystem command.

The Q(uit command is used to exit the
QUICKSTART utility program.

The QUICKSTART utility menu is displayed
after the completion of each P(rogram or
S(ystem command.

5-32 0100101:05A

Utility Programs

The error messages which may be output by
the QUICKSTART utility are listed and
explained later. Generally, any error causes
the processing associated with the current
QUICKSTART command to be aborted and any
output file discarded. QUICKSTART may
occasionally generate warnings which appear in
the form of a message on the console. These
warning messages are also listed later in this
chapter,

P(rogram Command

When the P(rogram command is entered, you
are prompted:

Quickstart what program?

You should enter the name of the code file to
be quickstarted (.CODE is appended to the
name you enter if necessary). A plain <return>
causes the current command to be canceled and
the QUICKSTART menu to be displayed.

Once the input code file has been successfully
opened, the action taken by QUICKSTART
depends on the setting of the C(opy toggle
option. If the C(opy toggle option is enabled,
QUICKSTART prompts for the output file.

To what codefile?

0100101:05A 5-33

Utility Programs

5-34

An empty <return> cancels the current
command and returns to the QUICKSTART
menu. You may utilize the "$" character in
the response to this prompt to denote the
corresponding file name. For example, if the
input file was 'MYDISK:BIGPROG.CODE' and
your response to the above prompt is
'NEWDISK:$', QUICKSTART would generate the
output file '"NEWDISK:BIGPROG.CODE'.

QUICKSTART automatically concatenates the
suffix ".CODE" to the output file, unless you
terminate the file name with a period. If you
do terminate the file name with a period,
however, a data file (rather than a code file)
is created. You can create SYSTEM.,PASCAL
in this manner, but all other files must be
created as code files (or they won't be
executable).

Once the input file and the output file have
been opened, QUICKSTART proceeds to create
a copy of the original program code file. The
code segments contained within the original
program code file are copied one at a time and
any old environment description for the
program isn't copied.

0100101:05A

Utility Programs

When the M(essage toggle option is on,
QUICKSTART displays a message at the start
of the copying process which identifies the
source and destination files involved in the
copying. When the copying is completed,
QUICKSTART displays the message "Copying
complete.” along with a report on the number
of blocks which were copied.

Also, when the M(essages toggle option is on,
the QUICKSTART utility displays messages
which identify the names and library code file
locations. of the individual units and segments
which are included in the description of the
execution environment of the program. The
following is an example of the messages that
appear during a typical QUICKSTART P(rogram
command:

Quickstart: P(rogram, S(ystem, C(opy, L(ibrary, M(essages, Q(uit [
Toggle settings: Copy ON, Library copy OFF, Messages ON
Quickstart what program? MYDISK:SUPERPROG.CODE

To what codefile? NEWDISK:$

Copying MYDISK:SUPERPROG.CODE to NEWDISK:SUPERPROG.CODE

Copying complete. (278 blocks copied)

Using KERNEL from *SYSTEM,PASCAL

Including PROGINIT as segment of SUPERPRO from NEWDISK:SUPERPROG.COD
Using SUPERPRO from NEWDISK:SUPERPROG.CODE

Using PASCALIO from *SYSTEM.PASCAL

Using HEAPOPS from *SYSTEM.PASCAL

Using PAGEMGR from ALTDISK:PAGEMGR.CODE

Installing new checksum into ALTDISK:EXPR.CODE

Installing new checksum into *SYSTEM.LIBRARY

Using LONGOPS from *SYSTEM.LIBRARY

Including FACTOR as segment of EXPR from ALTDISK:EXPR.CODE

Using EXPR from ALTDISK:EXPR.CODE

Quickstart construction complete.

Quickstart: P(rogram, S(ystem, C{opy, L(ibrary, M{essages, Q(uit [

0100101:05A 5-35

Utility Programs

5-36

A message of the form "Using UNITNAME from
FILE.NAME" reports the inclusion of the unit
UNITNAME which is located in the code file
FILE.NAME into the description of the
execution environment for the program. A
message of the form "Including SEGNAME as
segment of UNITNAME from FILE.NAME"
reports the inclusion of the segment SEGNAME
as a part of the unit UNITNAME located in
the library code file FILE.NAME.

A message of the form "Installing new
checksum into FILE.NAME" informs you of the
fact that QUICKSTART is attempting to install
a checksum into library code file FILE.NAME.

When a library code file is updated with a new
checksum and the L(ibrary copy toggle option
is on, QUICKSTART asks you if a copy of the
updated library code file is desired:

Copy updated file FILE.NAME?

This prompt is repeated until you respond with
a 'Y' or 'N'. If you press 'Y', QUICKSTART
prompts for the file to copy the updated
library code file:

Copy to what codefile?

0100101:05A

Utility Programs

An empty <return> cancels the copying
operation. The following is an example of a
library code file copying operation during a
P(rogram command:

Installing new checksum into RAMDISK:SYSTEM,LIBRARY
Copy updated file RAMDISK:SYSTEM,LIBRARY? Y

Copy to what codefile? MYDISK:S$S.

Copying RAMDISK:SYSTEM,LIBRARY to MYDISK:SYSTEM.LIBRARY
Copying complete. (34 blocks copied)

S(ystem Command

The system command is used to quckstart the
operating system (SYSTEM.PASCAL). This is
intended to make the p-System boot more
quickly.

NOTE: Although the S(ystem command is
implemented within QUICKSTART, the
operating system doesn't currently take
advantage of it, This means the p-System will
boot with the same speed whether or not the
operating system is quickstarted. Quickstarting
of the operating system will be supported in a
future release of the p-System.

0100101:05A 5-37

Utility Programs

5-38

The S(ystem command directs QUICKSTART to
install an environment description into a system
code file presumed to contain the operating
system. The operation of the S(ystem command
is identical to the operation of the P(rogram
command with the following exceptions:

® The generated environment description
includes all of the units which reside in the
system code file being processed, even if a
subset of the units aren't referenced by the
standard p-System units.

@ The generated environment description
doesn't contain references to the p-System
code file in use at the time when the
QUICKSTART utility is executed.

® An unresolved unit reference causes a
warning message to appear on the console
instead of resulting in a fatal error which
terminates the processing associated with
the command. This allows the p-System to
contain references to units which provide
the support for optional p-System
components, .

@® The system code file must contain a unit
with the name KERNEL, and that unit must
have a subsidiary segment with the name
USERPROG.

0100101:05A

Utility Programs

In the current p-System implementation, all of
the units referenced within the operating
system must reside in SYSTEM PASCAL.
QUICKSTART doesn't enforce or check for this
restriction however. In addition, QUICKSTART
doesn't enforce or check for other
implementation restrictions on the structure or
type of units which can be placed in SYSTEM
PASCAL.

Obsolete Environment Descriptions

Once an execution environment description is
installed in a code file, it will be utilized to
quickly construct the program's execution
environment as long as the description doesn't
become obsolete. An execution environment
description becomes obsolete when one or more
of the following alterations are made to the
p-System environment in which the program is
executed:

® SYSTEM.PASCAL is changed and the
program contains a reference to an
operating system unit which is no longer
available.

@ A referenced library code file is recompiled,
reassembled, or altered using the p-System
LIBRARY utility.

® A referenced library file can't be found
after searching on the following volumes:
the original volume where referenced, the
prefix volume, the root volume.

0100101:05A 5-39

Utility Programs

5-40

Retention of the exact volume locations of
referenced library code files result in optimal
program invocation times. An individual library
code file may be moved to a different physical
location on the same volume without any
resulting increase in program invocation time.

As mentioned previously, when an execution
environment description becomes obsolete, it is
still possible to execute the program. In such
a situation, the p-System ignores the obsolete
environment description and proceeds with the
normal invocation of the program.

0100101:05A

Utility Programs

QUICKSTART Error Messages

The following is a list of the error messages
which can be generated by the QUICKSTART
utility program. Following each error message is
a brief description of the error.

® Quickstart construction complete
This is not an error message, but instead
indicates successful completion of the
QUICKSTART environment description
generation process for a given program.

® Can't find FILE.NAME

Indicates that the specified code file couldn't
be found.

@ Error reading library FILE.NAME

An I/O error was detected by QUICKSTART
when reading the specified library code file.

® Error inserting checksum into FILE.NAME
An I/O error was detected by QUICKSTART
when inserting & new checksum into the
specified library code file,

@ Error creating FILE.NAME

An I/O error was detected by QUICKSTART
when creating the indicated library code file

copy.

0100101:05A 5-41

Utility Programs

5-42

Error reading FILE.NAME

An I/O error was detected by QUICKSTART
when reading the indicated code file
FILE.NAME.,

Error writing FILE.NAME

An I/O error was detected by QUICKSTART
when writing to the indicated code file.

Library list file FILE.NAME isn't a text file

The indicated file was specified as a library
text file, but it isn't a text file.

I/0 error reading library list file FILE.NAME

An I/O error was detected when reading the
indicated text file which was specified as a
library text file.

Warning: Library FILE.NAME not found

The indicated file was included on the library
code file search list but couldn't be found.
This is treated as a warning and not a fatal
error since the missing library file is simply
omitted from the list of library code files to
search.

0100101:05A

Utility Programs

@ Warning: UNIT_NAME unit not found

The indicated unit is referenced by the system
code file being processed by the QUICKSTART
utility but can't be found. This is treated as
a warning instead of a fatal error since the
operating system is allowed to contain
references to optional system units,

® Unit UNIT_NAME not found

The indicated unit is required by the program
being processed by QUICKSTART, but it can't
be found within the program's code file or
within one of the library code files.

@ Duplicate unit UNIT_NAME

This error indicates that there is more than
one unit within the program's execution
environment with the indicated name. This
error can occur if there is more than one unit
with the name within SYSTEM.PASCAL or
when the name of the program is the same as
the name of one of the units which reside in
SYSTEM.PASCAL.

0100101:05A 5-43

Utility Programs

-44

Too many library code files referenced

The required execution environment for the
program contains references to more individual
library code files than can be handled by the
system. The current implementation allows an
execution environment to contain references to
at most 50 distinct library code files. This
limitation can be worked around by using the
LIBRARY utility to package several units into
a single library code file. With the exception
of SYSTEM.PASCAL, there is no limit on the
number of units which can be packaged into a
library code file.

Too many system units referenced

The required execution environment for the
program contains references to more system
units than can be handled by the system. A
"system" unit is defined to be any unit which
resides in the system code file
SYSTEM.PASCAL. The current implementation
allows an execution environment to contain
references to at most 50 distinct system units.

No program in code file to execute

The code file to be executed doesn't contain
a segment which is classified as being a host
program. A unit by itself isn't an executable
program. (This ecror can also appear when
the QUICKSTART utility S(ystem command is
used and the system code file being processed
doesn't contain a wunit with the name
"KERNEL".)

0100101:05A

Utility Programs

@ System code file doesn't contain a USERPROG
segment

This error message appears when the
QUICKSTART utility S(ystem command is used
and the system code file being processed
doesn't contain a segment with the name
"USERPROG".

® Unit UNIT_NAME must be linked via L(ink
command

The indicated unit contains references to
assembly language routines which must be
linked into the program by SYSTEM.LINKER
before the program can be invoked.

@ Segment SEG_NAME is an obsolete code
segment

The indicated code segment must be
recompiled or reassembled with a more recent
compiler or assembler before it can be
executed on the current system.

® Insufficient memory to build environment

The amount of available memory isn't
sufficient to allocate the structures required
to construet the execution environment for the
program being invoked. The best work around
for this situation is to reduce the number of
separate library code files on the library code
file search list and to reduce the total number
of segment dictionary blocks whieh are
contained within those library code files.

0100101:05A 5-45

Utility Programs

® Environment descriptor buffer overflow

Internal error in the logiec of the
QUICKSTART utility.

5-46 0100101:05A

Utility Programs

REAL CONVERT

The REAL CONVERT utility can make some
programs run more quickly. It converts real
constants in a code file from canonical (compiled)
form to native machine format. It eliminates the
need to convert real constants at segment load
time, thus increasing the initial loading speed of
the program segments, as well as the overall
run-time speed of the program. This is especially
important for programs that require frequent
loading of segments containing real constants.

The real constant conversion utility is a filter that
works on code files, replacing canonical reals with
run-time reals in-place. Hence, when the source
file isn't available, you should make a backup copy
of the code file to be processed before executing
the utility program. This avoids the possibility of
destroying the code file while executing REAL
CONVERT with an unsuccessful write to disk.

Because the conversion algorithm uses real
arithmetic of the host processor, the utility must
be executed on the processor on which the output
file will run. In most cases, a code file produced
by the utility won't run on another processor,
reducing the portability of otherwise transportable
code.

0100101:05A 5-47

Utility Programs

To use the utility, X(ecute REALCONV from the
Command menu. It responds with the following
prompt:

ENTER FILE NAME:

Respond by entering the name of the code file to
be processed, followed by <return>. You don't
have to append the suffix .CODE.

If REAL CONVERT can't find the file, it prints
the message 'File not found' and asks you to enter
the file name again. Once a correct file is
entered, REAL CONVERT begins translating.

If REAL CONVERT can't complete the conversion
successfully, it prints a message and stops. The
messages can be:

not enough memory

error in reading...

The dots stand for:
segment dictionaries
first block
constant pool
segment
(as the case may be).

error in writing segment

too many dictionaries

'Not enough memory' means that the segment to be
processed is larger than the available memory
space.

5-48 0100101:05A

Utility Programs

If the message is 'error in reading...', X(ecute
REALCONYV again.

If the message is 'error in writing segment’', then,
before X(ecuting REALCONV again, you have to
restore the code file. Restoring the code file
depends on the availability of the source file, If
the source file is available, compile it again and
save the code file. If only the code file was
originally available, make a copy of the backup
code; file. (Remember to backup the original code
file.

'"Too many dictionaries' means that you have more
than 80 segments in the file.

The probability of getting any of the three
messages is extremely slight, but it can happen.

If REAL CONVERT executes successfully, a dot is
written on the console for each segment converted;
and, once the conversion is completed, the message
'Enter file name:' is displayed so you can process
another file. When there are no more files to
process, answer the prompt by pressing <return>.
This exits REAL CONVERT and returns you to the
Command menu.

0100101:05A 5-49

Utility Programs

LIBRARY

LIBRARY.CODE is a utility program that allows
you to group separate compilations (units or
programs) and separately assembled routines into a
single file. A library is = concatenation of such
compilations and routines. Libraries are a useful
means of grouping the separate pieces needed by a
program or group of programs. Manipulating a
single library file takes less time than if the
various pieces it contains were each within an
individual file. Libraries generally contain routines
relating to a certain area of application; they can
be used for functional groupings much as units can.
Thus, you might want to maintain a math library, a
data file-management library, and so forth—each of
these libraries containing routines general enough to
be used by many programs over a long period of
time.

Individual programs might also take advantage of
the library construct. If a program uses several
units suitable for compiling separately, but the
units themselves are too small to warrant putting
each into its own file, you would want to construct
a single library containing all of those units.

Even if a file contains only a single unit or
routine, it is treated as a library when the unit or
routine is used by some external host.

Library is wuseful for putting units into
SYSTEM.LIBRARY or other libraries and grouping
assembly routines together.

5-50 0100101:05A

Utility Programs

This section uses the term compilation unit. A
program or unit and all the segments declared
inside it are called a compilation unit. The
segment for the program or unit is called the host
segment of the compilation unit. Segment routines
declared inside the host are called subsidiary
segments. Units used by the host aren't segments
belonging to that compilation unit, Units used by
the compilation unit generate information in the
host segment called segment references. The
segment references contain the names of all
segments referenced by a compilation unit, and the
operating system uses this information to set up a
run-time environment.

Some routines called from hosts exist in units in
the operating system and, therefore, appear in
segment references, even though there is no
explicit USES declaration. For example, WRITELN
resides in the operating system UNIT PASCALIO, so
the name PASCALIO arnears in the segment
references of any host that calls WRITELN,

Using Library

When Library is executed, it displays a prompt
asking for an output file name. The file name
must end in .CODE. Library removes an old file
with the same name as the new library.

Library then displays a prompt asking for the
input file name. .CODE is automatically
appended.

0100101:05A 5-51

Utility Programs

Library Example

You specify SCREENOPS,CODE as an input file.
Library displays the following listing.

Library: N(ew, 0-9(slot-to-slot, E(very, S(elect, C(omp-unit, F(ill,?

Input file? SCREENOPS<xeturn>
u SCREENOP 582

1 s SEGSCINI 508

2 s SEGSCPRO 229

3 s SEGSCCHE 126

Output file? NEW.CODE<return>

The preceding display shows that the file
SCREENOPS consists of one unit and three
segment routines. There are four possible types
of code that can occupy the slots in a library:
units, programs, segment routines, and assembled
routines. Library displays the type, along with
the name and length (in words) of each module.

5-52 0100101:05A

Utility Programs

Library's menu shows the various commands
available.

® The N(ew command displays a prompt asking
for a new input file.

® The A(bort command stops Library without
saving the output file.

® The Q(uit command stops Library and saves
the output file. Then Library displays the
prompt, 'Notice?', at the top of the screen.
Enter copyright notice and press <return>, It
is placed in the output file's segment
dictionary. Pressing <return> without entering
a copyright notice exits Library without
writing a copyright notice.

® The T(og command toggles a switeh that
determines whether or not INTERFACE parts
of units are copied to the output file.

® The R(efs command lists the names of each
entry in the segment reference lists of all
segments currently in the output file. The
list of names also includes the names of all
compilation units currently in the output file,
even though their names may not occur in any
of the segment references.

0100101:05A 5-53

Utility Programs

The remaining five commands allow code segments

to

be transferred from the input file to the

output file.

5-54

A given slot can be transferred to the output
file by entering a digit (0 through 9). Library
then displays a prompt: 'Copy from slot # ?!
along with the digit just entered. If that is
the name of the slot, press <space>. If that
is the first digit of a two-digit slot number,
enter the second digit and press <space>.
Library confirms the entry before actually
copying code. Press <backspace> to correct
errors. If you press <return> without entering
a number, the copy doesn't happen and Library
redisplays its menu.

If the destination slot in the output file is
already filled, the system displays a warning
and no copy takes place. If an identical code
segment is already present anywhere in the
output file, the new code segment is copied
anyway.

The E(very command copies all of the codes in
the input file to the output file. If, for any
code segment, the corresponding slot in the
output file is alread filled, then Library
searches for the next available slot and places
the code there. If, for any code segment, an
identical code segment already exists in the
output file, that segment isn't copied over.

0100101:05A

Utility Programs

® The S(elect command causes Library to display
a prompt asking which code segments to
transfer. For each code segment not already

in the output file, Library displays the
prompt: 'Copy from slot #_?'. Pressing 'Y'
or 'N' causes the segment to be copied or
passed by; pressing 'E' causes the remainder
of the code segments to be transferred (as in
E(very); pressing <space> or <return> aborts
the S(elect. If the corresponding slot in the
. output file is filled, Library searches for the
next available slot and places the code there.

® C(omp-unit causes Library to display the
prompt: 'Copy what compilation unit?'. The
compilation unit named is transferred along
with any segment procedures that it
references. Procedures already present in the
output file aren't copied.

@ F(ill does the equivalent of a C(omp-unit
command for all the compilation units
referenced by the segment references in the
output file.

@ I(nput displays the next page of the segment
dictionary in the input file. (If there are
more than 16 code segments in the file, two
or more segment dictionary pages are
required.)

@ O(utput displays the next page of the segment
dictionary in the output file.

0100101:05A 5-55

Utility Programs

SETUP

SETUP is provided as a system utility that "sets
up" the p-System to properly interface with your
hardware. It resides in a file called SETUP.CODE
and creates a data file containing detailed
information about your terminal and a few
miscellaneous details about the system. You can
run SETUP and change the data as many times as
you want. After running SETUP, you must reboot
so that the system starts using the new
information. (In some cases, you can just
I(nitialize.) You should also backup the old data
file—at least until you're sure that the new one is
correct.

SETUP takes its initial information from a file
called SYSTEM.MISCINFO and can create a new
version of that file called NEW.MISCINFO. The old
version must be removed or renamed and the new
version renamed SYSTEM.MISCINFO before some of
the changed values it may contain can become
effective.

SYSTEM.MISCINFO contains three types of
information:

1. Miscellaneous data about the system.
2. General information about the terminal.

3. Specifie information about the terminal control
keys.

5-56 0100101:05A

Utility Programs

Running SETUP

Run SETUP like any other program with the
X(ecute command. It will display the word
'INITIALIZING' followed by a string of dots, and
then the menu:

SETUP: C(HANGE T(EACH B(ELP Q(UIT [version]

To select any option, just press its initial letter.

When H(ELP appears on a menu, it can describe
all the options on that menu.

T(EACH gives a detailed description of how to
use SETUP. Most of it concerns input formats,
which are mainly self-explanatory. However, if
this is your first time running SETUP, you should
look through all of T(EACH.

C(HANGE gives you the option of going through
a prompted menu of all the items or of changing
one data item at a time. In either case, the
current values are displayed, and you have the
option of changing them. If this is your first
time running SETUP, the values given are the
system defaults. You will find that your
particular terminal probably requires different
specifications.

0100101:05A 5-37

Utility Programs

Q(UIT has the following options:
H(ELP).

M(EMORY) UPDATE, which places the new
values in main memory.

D(ISK) UPDATE, which creates NEW.MISCINFO
on your disk for future use.

R(ETURN), which lets you go back into SETUP
and make more changes.

E(XIT), which ends the program and returns
you to the Command menu.

Please note that if you have a NEW.MISCINFO
already on your disk, D(ISK) UPDATE will write
over it.

When you use SETUP to change your character
set, don't underestimate the importance of using
keys you can easily remember and of making
dangerous Kkeys, like BREAK, ESCAPE, and
RUBOUT, hard to hit.

5-58 0100101:05A

Utility Programs

Once you have run SETUP, always backup
SYSTEM.MISCINFO under another name.
(OLD.MISCINFO is one suggestion.) You also
might want to name your backups according to
different terminals; for example, ADDS.MISCINFO,
1Q120.MISCINFO, TELUD.MISCINFO, and so on.
Then, change the name of NEW.MISCINFO to
SYSTEM.MISCINFO and reboot. You can also
update to memory, alone, and continue using the
system without rebooting. However, the results
of your doing this may not always be what you
wanted—and you won't have a backup. In
general, M(EMORY UPDATE is a Q(UIT option
you will use only when experimenting. If you do
run into trouble, remember that you can save the
current in-memory SYSTEM.MISCINFO by running
SETUP and performing a D(ISK) UPDATE before
you change any data items.

When you reboot or I(nitialize, the new
SYSTEM.MISCINFO will be read into main memory
and the system will use its data, provided it has
been stored under that name on the system disk
(the disk from which you boot).

The only thing SETUP won’t arrange for you, as
far as terminal handling goes, is to tell the
system how to do random cursor positioning for
your terminal. This 1is a feature that the
Screen-Oriented Editor requires. To learn how to
support this capability, see the section on the
SCREENOPS unit in the UCSD p-System Program
Development User Guide.

0100101:05A 5-59

Utility Programs

Miscellaneous Notes for SETUP

In general, if SETUP prompts for a feature that
your terminal doesn't have, set the item to NUL
(zero).

Set your terminal to run in full duplex, with no
auto-echo.

Don't use terminal funections that do a "delete
and close up" on lines or characters—not all
terminals have these funections, so they are
supplied through the Screen-Oriented Editor's
software. ’

You can use SETUP to specify two- or
three-character control (escape) sequences from
the terminal keyboard.

5-60 0100101:05A

Utility Programs

If you use the ANSI SCREENOPS unit, instead of
the standard SCREENOPS, the p-System ignores
all of SETUP's screen parameters. They include:

BACKSPACE

ERASE LINE

ERASE SCREEN

ERASE TO END OF LINE
ERASE TO END OF SCREEN
LEAD IN TO SCREEN

MOVE CURSOR HOME

MOVE CURSOR RIGHT
MOVE CURSOR UP

In previous versions of the p-System, there were
only 6 storage devices (4, 5, 9 through 12). The
number of storage devices is now configurable
with SETUP. After the highest-numbered storage
device, subsidiary volumes are allocated device
numbers. The number of subsidiary volumes is
also configurable. Above the highest-numbered
device set aside for subsidiary volumes,
user-defined serial devices may be defined. The
maximum number of user-defined serial devices is
16. The highest unit number allowed for any of
these devices is 127. The following fields
allocate these unit numbers:;

FIRST SUBSIDIARY VOL NUMBER
MAX NUMBER OF SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS

These fields are described below.

0100101:05A 5-61

Utility Programs

The memory update feature of SETUP doesn't
update any of the following fields:

In

HAS SPOOLING

HAS EXTENDED MEMORY

CODE POOL SIZE

CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SECOND WORD]
SEGMENT ALIGNMENT

FIRST SUBSIDIARY VOL NUMBER
MAX NUMBER OF SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS

order to update these fields, create a new

SYSTEM.MISCINFO on the boot disk and reboot.

5-62

0100101:05A

Utility Programs

SYSTEM.MISCINFO — Data Items

The information in this section is very specific;
you may skip it on first reading. However, if
you have a question about a certain data item,
look in this section. Default values are shown
and, sometimes, are our recommendations. When
no suggested values are given, you should consult
your own terminal's documentation. The items
are ordered according to SETUP's menu.

If you are using a hard copy terminal or a
storage screen, rather than a CRT, you can
ignore all the data items that are only used by
the Screen-Oriented Editor, leaving them set to
their defaults. In particular, if you are in doubt
about a particular item, it is safest to leave it
set to NUL. Always leave items set to NUL
that concern features that your terminal doesn't
have (ERASE LINE, for instance); the software
takes care of these situations.

Please note that SETUP frequently distinguishes
between a character that is a key on the
keyboard and a character that is sent to the
screen from the system; on some terminals, two
different characters may perform the same
function. On other terminals, the key pressed
and the character sent for a given function may
be the same,

0100101:05A 5-63

Utility Programs

There are a few characters you can't change
with SETUP. These are CARRIAGE RETURN
(<return>), LINE FEED (<1f>), ASCIl DLE
(CTRL-P), and TAB (CTRL-I). It is assumed that
<return>, <If>, and TAB are consistent on all
terminals. ASCIl DLE (data link escape) is used
as a blank compression character. When sent to
an output text file, it is always followed by a
byte containing the number of blanks which the
output device must insert. If you try to use
CTRL-P for any other function, you will run into
trouble.

BACKSPACE

When sent to the screen, the backspace character
should move the cursor one space to the left.
Default: ASCI BS.

CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SECOND WORD]

Use these two entries to determine where the
code pool resides on machines that use extended
memory.

5-64 0100101:05A

Utility Programs

On some extended memory systems, these two
words, taken together, make up the 32 bit
address for the base of the external code pool.
The FIRST WORD is the most-significant 16 bits,
and the SECOND WORD is the least-significant
16 bits. The least-significant four bits must
always be 0 on 8086 systems., Depending upon
your memory configuration, for 8086 systems you
might set these values as follows:

FIRST WORD

=1
SECOND WORD =

0

This indicates the binary value of 1 followed by
16 zeros (the start of the second 64K area).

On 9900 systems, the FIRST WORD is the 990/10
memory BIAS. (This isn't a straight memory
address; see your hardware manual for more
information concerning 9900 BIAS.) It defines
the start of the code pool area. The SECOND
WORD isn't used. There is no error checking
done on this value, anywhere, except by the 9900
hardware.

NOTE: The PoolBase field in the Pooldes record
within the operating system will be set to the
value indicated by these two fields. If the code
pool is internal (that is, you aren't using
extended memory), set both words to 0.

0100101:05A 5-65

Utility Programs

NOTE: Don't execute .RELPROC and .RELFUNC
assembly language routines on TI 9900 systems
when an external code pool is being used.
Attempting to execute such a routine results in
run-time error number 11 (instruction not
implemented). Use .PROC and .FUNC, which
forces code to be placed in the heap—instead of
the external code pool.

CODE POOL SIZE

If the code pool is external, this entry indicates
the number of WORDS, minus one, available for
it to fill. The Poolsize field in Pooldes will be
set to this value, This value may be as great as
32767 (a 64K area). It may also be smaller, if
desired, but it should be at least 12287 (a 24K
area). The base address of this area is given by
the two code pool base words. This value is
ignored if you aren't using extended memory.

EDITOR ACCEPT KEY

This key is used by the Screen-Oriented Editor.
When pressed, it ends the action of a command
and accepts whatever actions were taken.
Default: ASCII ETX.

5-66 0100101:05A

Utility Programs

EDITOR ESCAPE KEY

This key is used by the Secreen-Oriented Editor.
It is the opposite of the EDITOR ACCEPT
KEY—when pressed, it ends the action of a
activity and ignores whatever actions were taken.
Default: ASCII ESC.

EDITOR EXCHANGE-DELETE KEY

This key is also used by the Screen-Oriented
Editor. It operates only while doing an X(change
and deletes a single character.

EDITOR EXCHANGE-INSERT KEY

Like the EDITOR EXCHANGE-DELETE KEY, this
only operates while doing an X(change in the
Sereen-Oriented Editor—it inserts a single space.

ERASE LINE

When sent to the screen, this character erases all
the characters on the line that the cursor is on.

ERASE SCREEN

When sent to the screen, this character erases
the entire screen.

0100101:05A 5-67

Utility Programs

ERASE TO END OF LINE

When sent to the screen, this character erases all
characters, starting at the current cursor position
to the end of the same line.

ERASE TO END OF SCREEN

When sent to the screen, this character erases all
characters, starting at the current cursor position
to the end of the screen.

FIRST SUBSIDIARY VOL NUMBER

This entry is the first unit number to be used as
a subsidiary volume. For example, if you set it
to 14, the first subsidiary volume is device #14:.

NOTE: In previous versions of the p-System,
only 6 storage devices were allowed: 4, 5, 9
through 12. Now the number of storage devices
is configurable., The devices from 9 through
"First subsidiary vol number" -1 are now standard
storage devices. Subsidiary volumes start with
the device number indicated by "First subsidiary
vol number." The number of subsidiary volumes
is determined by "Max number of subsidiary vols."
The highest device number allowed for subsidiary
volumes, standard storage devices, or user-defined
serial volumes (described below) is 127. (The
device numbers 128 and above are reserved for
user-defined devices.

5-68 0100101:05A

Utility Programs

WARNING: "First subsidiary vol number" must be
greater than 8 to allow space for all of the
standard system units.

HAS 8510A

Should always be false.

HAS BYTE FLIPPED MACHINE

This may be TRUE or FALSE, On PDP-11,
LSI-11, 8080, Zz-80, 6502, 8086, 8088, and
HP86/87 processors this bit is FALSE, On the
68000, 9900, and 6809, it is TRUE.

HAS CLOCK

This value may be TRUE or FALSE. If your
hardware has a line frequency (60 Hz) clock
module, such as the DEC KWI11, setting this bit
TRUE allows the system to optimize disk
directory updates. It also allows you to use the
TIME intrinsie. If your hardware doesn't have a
clock, this must be FALSE. (If you are using the
adaptable system, you must write your own
clock-handler; until it is installed, this item must
be FALSE.)

0100101:05A 5-69

Utility Programs

HAS EXTENDED MEMORY

When extended memory isn't used, the code pool
resides between the stack and the heap. If the
code pool is removed from that memory space
and placed in a different area altogether, then
set HAS EXTENDED MEMORY to TRUE;
otherwise, set it to FALSE. (An example of
extended memory is a 128K byte machine where
the stack and heap reside within one 64K areas,
and the code pool resides within the other 64K
area.)

HAS LOWER CASE

This may be TRUE or FALSE. It should be
TRUE if you do have lowercase and want to use
it. If you seem stuck in uppercase, even if this
bit is TRUE, remember there is a soft alpha-lock:
see KEY TO ALPHA LOCK.

HAS RANDOM CURSOR ADDRESSING

This value may be TRUE or FALSE. If your
terminal isn't a CRT, this should be FALSE.

HAS SLOW TERMINAL

This velue may be TRUE or FALSE. When this
bit is TRUE, the system's menus and prompts are
abbreviated. You should leave this set to
FALSE, unless your terminal runs at 600 baud or
slower.

5-70 0100101:05A

Utility Programs

HAS SPOOLING

Set this to TRUE, if the PRINT SPOOLER is to
be used. If this field is true in
SYSTEMMISCINFO and SPOOLOPS hasn't been
LIBRARYed into SYSTEM.PASCAL, the p-System
won't boot.

HAS WORD ORIENTED MACHINE

May be TRUE or FALSE. If your processor uses
byte addresses for memory references, this should
be FALSE.

KEYBOARD INPUT MASK

Characters that are recieved from the keyboard
will be logically ANDed with this value. For the
typical ASCIl keyboard, set this value to 7F
hexadecimal (which throws away the eighth bit).
For some keybords, which generate eight bit
characters, use FF hexadecimal. Default:
ASCII DEL.

KEY FOR BREAK

When this key is pressed while a program is
running, the program terminates immediately with
a run-time error. Recommendation: a key that is
difficult to hit accidentally. Default:
ASCII NUL.

0100101:05A 5-71

Utility Programs

KEY FOR FLUSH

This key may be pressed while the system is
sending output to the console. The first time it
is pressed, output is no longer displayed and will
be ignored ("flushed") until FLUSH is pressed
again. This can be done any number of times;
FLUSH functions as a toggle. Note that
processing continues while the output is ignored,
so using FLUSH causes output to be lost.
Default: ASCII ACK.

KEY FOR STOP

This key may be pressed while the system is
writing to CONSOLE:. Like FLUSH, it is a
toggle. Pressing it once causes output and
processing to stop; pressing it again causes
output and processing to resume; and so on. No
output is lost; STOP is useful for slowing down a
program so the output can be read while it is
being sent to the terminal. Default: ASCII DC3.

KEY TO ALPHA LOCK

When sent to the screen, this character locks the
keyboard in uppercase (alpha mode). It is usually
a key on the keyboard as well. Default: ASCII
DC2.,

5-72 0100101:05A

Utility Programs

KEY TO DELETE CHARACTER

This deletes the character where the cursor is
and moves the cursor one character to the left.
Default: ASCII BS.

KEY TO DELETE LINE

This key deletes the line that the cursor is
currently on. Default: ASCII DEL.

KEY TO END FILE

This key sets the intrinsic Boolean function EOF
to TRUE when pressed while reading from the
system input files (either KEYBOARD or INPUT,
which come from device CONSOLE:). Default:
ASCIl ETX.

0100101:05A 5-73

Utility Programs

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT

KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP

These keys are recognized by the Screen-Oriented
Editor and are used when editing a document to
move the cursor about the screen. If your
keyboard has a vector pad, you should use those
keys for these funetions. If you have no vector
pad, you might seleet four keys in the same
pattern (for example, '.', 'K', %;', and 'O', in that
order) and use them as your vector keys,
prefixing them or using the corresponding ASCII
control codes.

LEAD IN FROM KEYBOARD

On some terminals, pressing certain keys
generates a two-character sequence. The first
character in these cases must always be a prefix
and must be the same for all such sequences.
This data item specifies that prefix. Note that
this character is only accepted as a lead in for
characters where you have set
PREFIXED[<item name>] to TRUE. (See MOVE
CURSOR HOME for an example of this.)

74 0100101:05A

Utility Programs

LEAD IN TO SCREEN

Some terminals require a two-character sequence
to activate certain functions. If the first
character in all these sequences is the same, this
data item can specify this prefix. This item is
similar to the one above. The prefix is
generated only as a lead in for characters where
you have set PREFIXED[<item name>] to TRUE.
An example of this is in MOVE CURSOR HOME.

MAX NUMBER OF SUBSIDIARY VOLS

This field indicates the maximum number of
subsidiary volumes that may be mounted at once.
Because the p-System Unit Table expands a few
bytes with each additional subsidiary volume
entry, set this number to the smallest convenient
value. (Also see FIRST SUBSIDIARY VOL
NUMBER.)

The highest subsidiary volume will be "First
subsidiary vol number" + "Max number of
subsidiary vols" -1. This expression must be less
than or equal to 127, which is the highest device
number allowed for system units.

0100101:05A 5-75

Utility Programs

MAX NUMBER OF USER SERIAL VOLS

This entry is the total number of user-defined
serial volumes desired. The first device number
assigned to a user-defined serial volume is "First
subsidiary vol number" + "Max number of
subsidiary vols."

For example, if "First subsidiary vol number" is
12 (#12:) and "Max number of subsidiary vols" is
4, then the first user-defined serial volume #16:.
If this entry, "Max number of user serial vols", is
2, then the user-defined serial volumes are #16:
and #17:,

If "Max number of subsidiary vols" is 0, then the
first user-defined serial volume is equal to "First
subsidiary vol number", In this case, "Max
number of user serial vols" + "First subsidiary vol
number” -1 yields the highest-numbered
user-defined serial volume.

NOTE: The largest value allowed for "Max
number of user serial vols" is 16. The
highest-numbered user-defined serial volume must
be less than or equal to 127.

5-76 0100101:05A

Utility Programs

NOTE: User-defined serial volumes differ from
user-defined devices (described under "The
Extended SBIOS" in the Adaptable System
Installation Manual). User-defined serial volumes
are part of the system devices. These devices
are allocated device numbers 0 through 127.
Device numbers 128 through 255 are allocated for
true user-defined devices. User-defined devices
can only be accessed using unit 1/0, whereas the
standard p-System file I/O capabilities can be
used with system devices such as user-defined
serial volumes.

MOVE CURSOR HOME

When sent to the terminal, this key moves the
cursor to the upper left of the screen (position
(0,0)). If your terminal doesn't have a character
that does this, this data item must be set to
CARRIAGE RETURN; then, you won't be able to
use the Screen-Oriented Editor.

MOVE CURSOR RIGHT

When sent to the terminal, tiis moves the cursor
nondestructively one space to the right. If your
terminal doesn't have this function, you won't be
able to use the Screen-Oriented Editor.

0100101:05A 5-77

Utility Programs

MOVE CURSOR UP

When sent to the terminal, this moves the cursor
up one line. If your terminal doesn't have this
function, you won't be able to use the
Screen-Oriented Editor.

NONPRINTING CHARACTER

This character is displayed on the screen when a
nonprinting character is entered or sent to the
terminal while using the Screen-Criented Editor.

PREFIXED[<item name>]

If you set this to TRUE, the system recognizes
that a two-character sequence must be generated
by a key or sent to the screen for <item nameb.
See the explanations for LEAD IN FROM
KEYBOARD and LEAD IN TO SCREEN. Note
that one of these items is
PREFIX[DELETE CHARACTER]. This refers to
backspace; you ecean think of it as
PREFIX[BACKSPACE]

PRINTABLE CHARACTERS

This entry is used to determine which character
codes will be echoed to the console. Any code,
from 0 to 255, may be defined as an echoable
code.

5-78 0100101:05A

Utility Programs

SETUP requires input in the form of a list of
decimal values separated by commas or double
periods. The values separated by commas
correspond to the ASCII characters that will be
echoed to the console. The double periods
indicate that all values between the two
indicated numbers are included; for example, 32
through 126 (32..126) includes the values 32, 126,
and all values between them., The default is:

13, 32..126

(Carriage return is 13, and 32 through 126 are
the standard printable characters). The value 13
must always be present.

SCREEN HEIGHT

Starting from 1, this is the number of lines in
your display screen. If you are using a hard
copy terminal, set this to 0.

SCREEN WIDTH

Starting from 1, this is the number of characters
in one line on your display.

0100101:05A 5-79

Utility Programs

SEGMENT ALIGNMENT

For ease of implementation, some systems require
a code segment to be aligned to a certain
address. For example, on 8086 based systems
each code segment's starting address must be an
integral multiple of 16 (that is, 0, 16, 32, and so
on). Therefore, the segment alignment is 16.
Most systems require no segment alignment and a
value of 0 or 1 indicates this.

The processor segment alignments are as follows:

Non-extended Extended

Memory Memory
7280 0 N/A
8080 0 N/A
8086 0 16
9900 0 0
6502 0 N/A
6809 0 N/A
68000 0 0
HP-87 0 0
PDP-11tm ¢ 64
STUDENT

On all systems, this should be FALSE.

5-80 0100101:05A

Utility Programs

VERTICAL MOVE DELAY

This may be a decimal integer from 0 to 10.
Many terminals require a delay after vertical
cursor movements. This delay allows the
movement to be completed before another
character is sent. This data item specifies the
number of nulls the system sends to the terminal
after every CARRIAGE RETURN, ERASE TO
END OF LINE, ERASE TO END OF SCREEN,
CLEAR SCREEN, and MOVE CURSOR UP.

0100101:05A 5-81

Utility Programs

Summary of Data Items

All the fields which SETUP modifies are:

5-82

BACKSPACE

CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SECOND WORD]
CODE POOL SIZE

EDITOR ACCEPT KEY

EDITOR ESCAPE KEY

EDITOR EXCHANGE-DELETE KEY
EDITOR EXCHANGE-INSERT KEY
ERASE LINE

ERASE SCREEN

ERASE TO END OF LINE

ERASE TO END OF SCREEN
FIRST SUBSIDIARY VOL NUMBER
HAS 8510A

HAS BYTE FLIPPED MACHINE
HAS CLOCK

HAS EXTENDED MEMORY

HAS LOWER CASE

HAS RANDOM CURSOR ADDRESSING
HAS SLOW TERMINAL

HAS SPOOLING

HAS WORD ORIENTED MACHINE
KEYBOARD INPUT MASK

KEY FOR BREAK

KEY FOR FLUSH

KEY FOR STOP

KEY TO ALPHA LOCK

KEY TO DELETE CHARACTER
KEY TO DELETE LINE

KEY TO END FILE

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP

0100101:05A

Utility Programs

LEAD IN FROM KEYBOARD

LEAD IN TO SCREEN

MAX NUMBER OF SUBSIDIARY VOLS

MAX NUMBER OF USER SERIAL VOLS
MOVE CURSOR HOME

MOVE CURSOR RIGHT

MOVE CURSOR UP

NONPRINTING CHARACTER
PREFIXED[DELETE CHARACTER]
PREFIXED[EDITOR ACCEPT KEY]
PREFIXED[EDITOR ESCAPE KEY]
PREFIXED[EDITOR EXCHANGE-DELETE KEY]
PREFIXED[EDITOR EXCHANGE-INSERT KEY]
PREFIXED[ERASE LINE]

PREFIXED[ERASE SCREEN]
PREFIXED[ERASE TO END OF LINE]
PREFIXED[ERASE TO END OF SCREEN]
PREFIXED[KEY TO DELETE CHARACTER]
PREFIXED[KEY TO DELETE LINE]
PREFIXED[KEY TO MOVE CURSOR DOWN]
PREFIXED[KEY TO MOVE CURSOR LEFT]
PREFIXED[KEY TO MOVE CURSOR RIGHT]
PREFIXED[KEY TO MOVE CURSOR UP]
PREFIXED[MOVE CURSOR HOME]
PREFIXED[MOVE CURSOR RIGHT]
PREFIXED[MOVE CURSOR UP]
PREFIXED[NONPRINTING CHARACTER]
PRINTABLE CHARACTERS

SCREEN HEIGHT

SCREEN WIDTH

SEGMENT ALIGNMENT

STUDENT

VERTICAL MOVE DELAY

0100101:05A 5-83

Utility Programs

Sample SETUP Session

The following is a sample of part of a SETUP
session. The data is being changed from the
system defaults to the specifications for a Soroe
terminal. All underlined text like this you enter,
and all text enclosed in curly brackets {like this}
is commentary. Angle brackets <{these> are used
to enclose the names of nonprinting characters
{like <return>}. All else is SETUP's output to
the terminal. A

{To begin, you must eXecute SETUP}

SETUP: C(HANGE T(EACH H(ELP Q(UIT (D1}

{H(ELP tells you about the other activities, and T(EACH.
describes the use of SETUP. Now is the most profitable
time to use these activities.

Suppose you have read H(ELP and T(EACH, and decide to
change data items by going through the menu. You must
press 'C' for C(HANGE.)}

c
{Note: these single~character activities don't echo.)}

CHANGE: S(INGLE) P{(ROMPTED) R(ADIX)
H(ELP) Q(UIT)

{H(ELP) describes the activities on this particular line,
R(ADIX) allows you to change the base of the numbers

you enter, and Q{(UIT) returns you to the SETUP: menu.
What you want to do now is go through the prompted menu.}

)3

FIELD NAME = BACKSPACE
OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

10 8 8 BS “H
WANT TO CHANGE THIS VALUE? (Y,N,1)
Sreturnd>

WANT TO CHANGE THIS VALUE? (Y,N,!)

{<return> or <space> will cause this menu to be repeated.
't' causes an escape to the CHANGE: menu.

Since control-H ("H) is indeed the Soroc's backspace,
you want to go on.!}

5-84 0100101:05A

Utility Programs

N

FIELD NAME = EDITOR ACCEPT KEY

OCTAL DECIMAL HEXADECIMAL ASCII CONTROL
0 0 0 NUL "8

WANT TO CHANGE THIS VALUE? (Y,N,!)

X
NEW VALUE: <home>

{When <home> or any other nonprinting key
is pressed, '?' is displayed.}

OCTAL DECIMAL HEXADECIMAL ASCII CONTROL
3 3 3 ETX °c
WANT TO CHANGE THIS VALUE? (Y,N,!)

N

FIELD NAME = EDITOR ESCAPE KEY
OCTAL DECIMAL HEXADECIMAL ASCII CONTROL
0 8} 0 NUL “e

WANT TO CHANGE TH1S VALUE (Y,N,!)

X

NEW VALUE: <return>

{Any unexpected input here causes the
relevant section of T(EACH to be output,
followed by this:}

C(ONTINUE)

{All characters are ignored except 'C', and
then the menu is repeated.}

[

NEW VALUE: <rubout> {Again, a '?' is echoed.}

OCTAL DECIMAL HEXADECIMAL ASCII

177 127 7F DEL

WANT TO CHANGE THIS VALUE? (Y,N,1)

{(Note that there is no corresponding control key.)
DEL is not the key you meant, so you must
change it again.}

X

NEW VALUE: <es¢c> {? is echoed.}

OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

33 27 1B ESC ~1
WANT TO CHANGE THIS VALUE? (Y,N,!)

N

0100101:05A 5-85

Utility Programs

{This is what it should be.}

{The menu continues in this way for the rest of
the data items. Suppose you have gone ahead and
answered all of the questions according to the
Soroc specifications; after the last data item,
you again get the menu:}

CHANGE: S(INGLE) P(ROMPTED) R(ADIX)
H(ELP) Q(UIT)

{You realize that you left the prefix for
ERASE LINE at FALSE, when it should be
TRUE. You want to change just this one
data item.}

S {For S(INGLE}}

NAME OF FIELD: PREFIXED [ERASEl

DIDN'T FIND PREFIXED [ERASE] {Oops}
NAME OF FIELD: PREFIXED [ERASE LINE]
FIELD NAME = PREFIXED [ERASE LINE]
CURRENT VALUE IS FALSE

WANT TO CHANGE THIS VALUE? (Y,N,!)

b4

NEW VALUE: TRUE {T would also work.!}
CURRENT VALUE IS TRUE

WANT TO CHANGE THIS VALUE? (Y,N,!)

N

CHANGE: S({INGLE) P (ROMPTED) R(ADIX)
H(ELP) Q(UIT)

o
SETUP: C(HANGE T(EACH H(ELP Q(UIT [D2}
Q {You're through changing data now.}

QUIT: D(ISK) OR M(EMORY) UPDATE,
R(ETURN) H(ELP) E(XIT)

{You want to do a disk update to create
NEW.MISCINFO on your disk for future use.}

R

QUIT: D(ISK) OR M(EMORY) UPDATE,
R(ETURN) H(ELP) E(XIT)

E

{And now you're done. The Command menu
will appear.}

5-86 0100101:05A

Utility Programs

Sample Terminal Setups

Here is a list of SYSTEM.MISCINFO data items
followed by some sample values for four popular
terminals., Some items in the SETUP menu
haven't been included; these are data items that
refer to your processor configuration, not your
terminal.

These examples represent what we consider
reasonable layouts for a few different keyboards,
but we don't guarantee that they work for your
particular hardware or mateh your individual
taste.

0100101:05A 5-87

Utility Programs

Terminals: Ls1 HAZELTINE SOROC HEATH ADDS
ADM-3A 150071510 10120 H19 Viewpoint
3A plus
Data Items:
BACKSPACE left-arrow backspace ctrl-H ctrl-H ctrl-H
EDITOR ACCEPT KEY ctrl-C ctrl-C home ctrl-C ctrl-C
EDITOR ESCAPE KEY esc esc esc ctrl-{ esc
ERASE LINE NUL NUL NUL 1 NUL
ERASE SCREEN ctrl-2 ctrl-\ ter E tur
ERASE TO END OF LINE NUL ctrl-0 T K T
ERASE TO END OF SCRN NUL ctrl-X Y J Y
HAS LOWER CASE TRUE TRUE TRUE TRUE TRUE
HAS RAND CURS ADDR TRUE TRUE TRUE TRUE TRUE
HAS SLOW TERMINAL FALSE FALSE FALSE FALSE FALSE
KEY FOR BREAK ctrli-B * break ** break break ctrel-B
KEY FOR FLUSH ctrl-F ctrl-F ctrl-fF ctrl-F ctrl-p
KEY FOR STOP ctrl-s ctrl-S ctri-S ctrl-S ctrl-S
KEY TO ALPHA LOCK ctrl-R NUL ctrl-R ctrl-R ctrl-R
KEY TO DELETE CHAR ctri-H backspace l-arrow ctrl-H ctri-8
KEY TO DELETE LINE rubout shift-DEL tubout DEL DEL
KEY TO END FILE ctrl-C ctrl-C ctrl-C ctrl-C ctrl-C
KEY TO MV CURS DOWN ctrl=J ctrl-K d-arcow B ctrl-J
KEY TO MV CURS LEFT ctrl-H backspace l-arrow D ctrl-#
KEY TO MV CURS RGHT ctrl-L ctrl-P r-arrow C ctrl-L
KEY TO MV CURS UP ctrl-K ctrl-L u-arrow A ctrl-K
LEAD IN FROM KEYBD NUL NUL NUL esc NUl
LEAD IN TO SCREEN NUL - esc esc esc
MOVE CURSOR HOME ctel-" ctrl-R ctel-" H ctrl-"
MOVE CURSOR RIGHT ctrl-L ctrl-P r-~arrow C ctrl-L
MOVE CURSOR UP ctrl-K ctrl-L u-arrow A ctrl-K
NONPRINTING CHAR 2 ' "2 b & "
PREF [DELETE CHAR] FALSE FALSE FALSE FALSE FALSE
PREF (ED ACCEPT KEY] FALSE FALSE FALSE FALSE FALSE
PREF [ED ESCAPE KEY) FALSE FALSE FALSE TRUE FALSE
PREF [ERASE LINE] FALSE FALSE FALSE TRUE FALSE
PREF [ERASE SCREENI] FALSE TRUE TRUE TRUE FALSE
PREF [ERASE TO EOLN) FALSE TRUE TRUE TRUE TRUE
PREF [ERSE TO EOSCN! PALSE TRUE TRUE TRUE TRUE
PREF [KEY DEL CHAR] FALSE FALSE FALSE FALSE FALSE
PREF (KEY DEL LINE} FALSE FALSE FALSE FALSE FALSE
PREP [KEY MV CRS DN] FALSE PALSE PALSE TRUE FALSE
PREF [KEY MV CRS LT! FALSE FALSE FALSE TRUE FALSE
PREF [KEY MV CRS RT} FALSE FALSE FALSE TRUE FALSE
PREF [(KEY MV CRS UP] FALSE FALSE PALSE TRUE FALSE
PREF [MOVE CRS HOME! FALSE TRUE FALSE TRUE FALSE
PREF [MOVE CURS RT] FPALSE FALSE FALSE TRUE FALSE
PREF [MOVE CURS UP] FALSE FALSE FALSE TRUE FALSE
PREF [NONPRINT CHAR) FALSE FALSE FALSE FALSE FALSE
SCREEN HEIGHT 24 24 24 24 24
SCREEN WIDTH 80 80 80 80 80
STUDENT FALSE FALSE PALSE FPALSE FALSE
VERTICAL MOVE DELAY $ s 10 10 [

* The BREAK key can also be used, but it's perilously close
to RETURN.
** Break is also control-® on Hazeltines.

5~-88 0100101:05A

Terminals: DEC IBM
vT-52 PC
Data Items:
BACKSPACE backspace ctrl-H
EDITOR ACCEPT KEY ctrl-C ctrl-C
EDITOR ESCAPE KEY esc esc
ERASE LINE ctrl-¢e L
ERASE SCREEN ctrl-e E
ERASE TO END OF LINE K K
ERASE TO END OF SCRN J J
HAS LOWER CASE TRUE TRUE
HAS RAND CURS ADDR TRUE TRUE
HAS SLOW TERMINAL FALSE FALSE
KEY FOR BREAK ctrl-@ ctrl-_
KEY FOR FLUSH ctrl-¥ ctrl-F
KEY FOR STOP ctrl-S ctrl-§
KEY TO ALPHA LOCK ctrl-R ctrl-R
KEY TO DELETE CHAR ctrl-H ctrl-H
KEY TO DELETE LINE del del
KEY TO END FI1LE ctrl-C ctrl~-C
KEY TO MV CURS DOWN B B
KEY TO MV CURS LEFT D D
KEY TO MV CURS RGHT C C
KEY TO MV CURS UP A A
LEAD IN FROM KEYBD esc ctrl-Q
LEAD IN TO SCREEN esc esc
MOVE CURSOR HOME H H
MOVE CURSOR RIGHT C C
MOVE CURSOR UP A A
NONPRINTING CHAR '2t !
PREF [DELETE CHAR] FALSE FALSE
PREF [ED ACCEPT KEY] FALSE FALSE
PREF [ED ESCAPE KEY} TRUE FALSE
PREF [ERASE LINE] FALSE TRUE
PREF {ERASE SCREEN} FALSE TRUE
PREF [ERASE TO EOLN) TRUE TRUE
PREF {ERSE TO EOSCN] TRUE TRUE
PREF [KEY DEL CHAR] FALSE FALSE
PREF [KEY DEL LINE] FALSE FALSE
PREF [KEY MV CRS DN] TRUE TRUE
PREF {KEY MV CRS LT] TRUE TRUE
PREF [KEY MV CRS RT) TRUE TRUE
PREF {KEY MV CRS UP) TRUE TRUE
PREF [MOVE CRS HOME] TRUE TRUE
PREF [MOVE CURS RT} TRUE TRUE
PREF [MOVE CURS UP} TRUE TRUE
PREF [NONPRINT CHAR} FALSE FALSE
SCREEN HEIGHT 24 25
SCREEN WIDTH 80 80
STUDENT FALSE FALSE
VERTICAL MOVE DELAY 0 1]

0100101:05A

Utility Programs

DATA~
MEDIA

backspace
ctrl-C
esc
ctrl-@
ctrl-L
ctrl-]
ctrl-K
TRUE
TRUE
FALSE
ctrl-@
ctrl-F
ctrl-§
ctrl-R
backspace
del
ctrl-C
d-arrow
l-arrow
r-arrow
u~arrow
ctri-@
ctrl-@
ctrl-y
ctrl-\
ctrl-_
I?I
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
24

80
FALSE

0

5-89

Utility Programs

DISKSIZE

The DISKSIZE utility enables you to alter the
storage capacity of a disk without having to change
the files on it. For example, you could change a
disk's size from 640 blocks to 320 blocks.

When you use DISKSIZE to make a disk smaller, you
should be sure that there is enough unused space
after the last file to absorb the decrease in
storage capacity. If there isn't, the resulting
directory will be_internally inconsistant since disk
space is being used which isn't supposed to be
available. (Files aren't removed by DISKSIZE.) If
you attempt to use DISKSIZE to make a disk larger
than its maximum storage capacity, DISKSIZE will
inform you that this can't be done.

When you X(ecute DISKSIZE, these prompts appear:

Change directory size on what unit (4,5,9..22) ?
Current size is xxx blocks
What is new directory size in 512 byte blocks ?

In response to the first prompt, you should enter
the device number of the disk to be altered.
- (Don't include the # sign or the colon in the
device number.)

The second line indicates the size of the disk
according to the current directory. The "xxx" is
actually a number such as 320,

5-90 0100101:05A

Utility Programs

The last prompt asks you to enter the new size for
the disk. You should enter the desired number
followed by <return>. If the number you enter is
larger than the maximum capacity (or smaller than
the minimum capacity) of the disk, you are
prompted:

No such block .
What is new directory size in 512 byte blocks ?

This means that you entered an invalid number and
should try again.

0100101:05A : 5-91

Utility Programs

COPYDUPDIR

COPYDUPDIR copies the duplicate directory of a
disk into the primary directory location. In certain
situations, a duplicate directory may help rescue
directory information that is garbled or lost.

The Z(ero command of the filer can create a
duplicate directory, as can the MARKDUPDIR
utility. Once a duplicate directory has been
created, the filer maintains it along with the
primary directory.

To use this utility, X(ecute 'COPYDUPDIR'. The
system then displays a prompt asking for the drive
in which the copy is to take place. If the disk
doesn't currently contain a duplicate directory,
COPYDUPDIR displays a prompt stating that. If
the duplicate directory is found, then
COPYDUPDIR displays a prompt asking if you want
to destroy the directory in blocks 2 through 5.
Press 'Y' to execute the copy; any other character
aborts the program.

5-92 0100101:05A

Utility Programs

MARKDUPDIR

MARKDUPDIR creates a duplicate directory on a
disk that doesn't currently contain one.

Be sure that blocks 6 through 9 are free for use.
If they aren't, use T(ransfer or a backward K(runch
to free them. To determine if these blocks are
available, do an extended listing in the filer and
check to see where the first file starts. If the
first file, or unused area starts at block 6, then
the disk doesn't have a duplcate directory.
However, if the first file or urused area starts at
block 10, then the disk already has a duplicate
directory.

MARKDUPIR Example

SYSTEM.PASCAL 106 1-Jan-83 6 Codefile
OR

<unused> 4 [
SYSTEM.PASCAL 106 1-Jan-83 10 Codefile

Both of the preceding cases indicate disks that
have no duplicate directory. The following listing
is a directory of a properly marked disk:

SYSTEM.PASCAL 106 1-Jan-83 10 Codefile

0100101:05A 5-93

Utility Programs

To create a duplicate directory, X(ecute
'MARKDUPDIR'. The system will display a prompt
asking which drive contains the disk to be marked
(#4 or #5). MARKDUPDIR checks to see if blocks
6 through 9 are free. If they aren't, the system
displays a prompt asking if you are sure they are
free. Press 'Y' to continue; any other character
will abort the program. Be sure that the space is
free before marking it as a duplicate directory;
otherwise, you'll lose file information.

5-94 0100101:05A

Utility Programs

RECOVER

The RECOVER utility attempts to recreate the
directory of a disk whose directory has accidentally
been destroyed.

When you X(ecute 'RECOVER!, it prompts you for
the drive number of the disk you wish to recover:

Recover [versionl]
USER'S DISK IN DRIVE # (0 exits):

You should enter the number, such as '5', without
the pound sign or colon, followed by <returnd.
Next, you are prompted for the new name to be
given to the recovered volume:

USER'S VOLUME ID:

You should enter a correct volume name. Finally,
RECOVER prompts:

How many blocks on disk?

Here you should indicate the total number of blocks
on the volume being recovered.

0100101:05A 5-95

Utility Programs

RECOVER reads each entry in the disk's directory
and checks it for validity. Entries with errors are
removed. Valid entries are saved, and RECOVER
displays: 'ENTRY.NAME found' (or something
similar).

When all the directory entries have been checked,
saved, or discarded, RECOVER displays the
following prompt:

Are there still IMPORTANT files missing (Y/N)?

If you press 'N', RECOVER displays the following
prompt:

GO AHEAD AND UPDATE DIRECTORY (Y/N)?

If you press 'N', RECOVER finishes executing

without doing anything.

If you press 'Y', RECOVER saves the reconstructed
directory and display the following prompt:

WRITE OK

Then RECOVER terminates.

5-96 0100101:05A

Utility Programs

If you press 'Y' in response to the 'Are there still
IMPORTANT files missing?' prompt, RECOVER
searches those areas of the disk still not acecounted
for by the (partially) reconstructed directory. Text
files and code files are detected, and appropriate
directory entries are created for them. If
RECOVER can't determine the original name of a
file it has found, it creates a directory entry for
DUMMY##.TEXT or DUMMY ##.CODE (where the
are two unique digits). If a code file has a
PROGRAM name, it is given that name. If this
would create a duplicate entry in the directory,
digits are used; for example, RECOVER first
restores SEARCH.CODE and, then,
SEARCHO00.CODE,

RECOVER can’t detect data files since their
format isn’t system-defined. To recover data files,
you must use the PATCH utility, described in the
UCSD p-System Program Development User Guide.

If RECOVER restores a text file with an odd
number of blocks, this probably means that the end
of the text file was lost. Use the editor to make
sure this is the case.

You should use the linker to relink recovered code
files (if linking was originally necessary).

When RECOVER has finished its pass over the
entire disk, it displays the following prompt:

GO AHEAD AND UPDATE DIRECTORY (Y/N)?

0100101:05A 5-97

APPENDICES

APPENDIX A
EXECUTION ERRORS

Fatal system error

Invalid index, value out of range
No segment, bad code file
Procedure not present at exit time
Stack overflow

Integer overflow

Divide by zero

Invalid memory reference <bus timed out>
User break

Fatal system [/O error

10 User I/O error

11 Unimplemented instruction

12 Floating point math error

13 String too long

14 Halt, Break Point

15 Bad Block

16 Break Point

17 Incompatible Real Number Size

18 Set Too Large

19 Segment Too Large

O WM& WO

All run-time errors cause the system to I(nitialize
itself; FATAL errors cause the system to
rebootstrap. Some FATAL errors leave the system
in an irreparable state, in which case the user must
rebootstrap.

A-2 0100101:0AA

APPENDIX B

I/0 RESULTS
0 No error
1 Bad Block, Parity error (CRC)
2 Bad Device Number
3 Illegal I/O request
4 Data-com timeout
5 Volume is no longer on-line
6 File is no longer in directory
7 Bad file name
8 No room, insufficient space on volume
9 No such volume on-line
10 No such file on volume
11 Duplicate directory entry
12 Not closed: attempt to open an open file
13 Not open: attempt to access a closed file
14 Bad format: error in reading real or integer
15 Ring buffer overflow
16 Volume is write-protected
17 [Illegal block number
18 Illegal buffer
19 Bad text file size

0100101:0AA A-3

APPENDIX C
DEVICE NUMBERS

device Volume
Jumber Name

t CONSOLE:
2 SYSTERM:
E <System disk '*'>
<other disk>
3 PRINTER:
7 REMIN:
3 REMOUNT:
10 HDUPRTA <hard disk>
3 and 11...127 <additional disks,
subsidiary volumes,
or user-defined
serial devices>
128...255 <user-defined devices>

0100101:0AA

W@ VE W= O

N NR R NN NN b e b et o b s ot bt bt
VO NP NEWN =D O® AN NEWN—O

30
31

0100101:0AA

000
001
002
0603
004
005
a0é
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

00
01
02
03
04
05
06
07
o8
09
DA
0B
ocC
ob
ot
oF
10
11
12
13
14
15
16
17
18
19
1A
iB
1C
j{o]
1£
1F

SOH
STX
ETX
EOT
ENQ
ACK
REL
8s
HT
LF
vT
FF

SO

S1

OLE
OCl
nC2
DC3
DCa

SYN
ETB

&M
SUB
ESC
FS
GS
RS
us

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59
60
61
62
63

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

APPENDIX D

ASCII TABLE

20 sP 64 100 40
21 ! 65 101 4l
22 " 66 102 42
23 67 103 43
26§ 68 104 44
25 % 69 105 45
26 & 70 106 46
27 ¢ 71 107 47
28 ¢ 72 110 48
29) 73 111 49
28+ 74 112 &A
28 . 75 113 4B
2c 76 114 4C
20 - 77 115 4D
28, 78 116 4E
2F] 79 117 4F
30 0 80 120 50
31 1 81 121 51
32 2 82 122 52
3303 83 123 53
34 4 84 124 54
35 5 85 125 55
36 6 86 126 56
37 7 87 127 57
38 8 88 130 S8
39 9 89 131 59
A 90 132 S5A
B 91 133 58
3IC < 92 134 SC
D = 93 135 5D
3E > 94 136 SE
3F 7 95 137 SF

Nt N XELSCHM DO VOZINr Re—=IO0MMOODPE

96

97

98

99
100
101
102
103
104
105
106
107
ing
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

140
141
142
143
166
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
176
175

176.

177

60
61
62
63
64
65
66
67
68
69
6A
68
6C
6D
6E
6F
70
71
72
73
74
75
76

78
79
7A
B8
c
7D
7€
7

e N X E<CEC 0 I0DVOII —X——TO 000D -

7

APPENDIX E
CONFIGURATION NOTES

This appendix briefly covers several topics related
to p-System configuration and possible problems
that you might encounter.

FLOATING POINT PACKAGES

The p-System may be configured to run with
two-word real numbers (32 bit precision), four-word
real numbers (64 bit precision), or no floating point
arithmetic at all. Programs which use two-word
precision can perform floating point operations with
6 to 7 digits of accuracy and a base 10 exponent
with an absolute value as large as 38
(approximately). Programs using four-word precision
can have up to 15 or 16 digits of precision and a
base 10 exponent with an absolute value as large
as 308 (approximately). These values vary
somewhat among processors.

The memory available to p-System programs
decreases as you go from no reals, to two-word
reals, to four-word reals. This results in tradeoffs
between floating point precision and memory space
availability that you should take into consideration.
Execution speed may also be a factor since code
may have to be swapped to and from disk more
often when there is less main memory space
available,

A-6 0100101:0AA

Appendix E

Application programs which use floating point
arithmetic require a p-System configured with the
same real size that they use. If you attempt to
run a program which uses a different real size from
the p-System you are using, you will receive a real
size mismatch error (execution error 17). If you
attempt to run a program which uses reals on a
p-System configured for no reals, you will receive
an unimplemented instruction error (execution error
11), (Programs that don't use real numbers will run
regardless of the floating point precision of the
p-System.)

When a Pascal program is compiled, the compiler
creates a code file which has the real size of the
PME being used. If you want to create a code file
with a specific real size (which doesn’t necessarily
correspond to the underlying PME at compilation
time), you can use the $R compiler option
(described in the UCSD p-System Program
Development User Guide). For FORTRAN and BASIC,

~there is a two-word .and four-word version of the

compiler. You should choose the compiler which
produces the desired real number size.

The rest of this section outlines how to create a
system with the real size that you want. This
information may not apply to you, however, since
some p-System suppliers provide separate boot disks
which are already configured for the different real
sizes. .

0100101:0AA A-7

Appendix E

The operating system (SYSTEM.PASCAL) and the
p-machine emulator (usually called SYSTEM.INTERP)
both must be configured for a particular real size.
They should be configured consistently with each
other.

In order to create a new SYSTEM.PASCAL with
real numbers, you must use the LIBRARY utility
(described in Chapter 5). With this utility, you
should place the appropriate REALOPS unit into
the new SYSTEM.PASCAL. Whenever you use the
LIBRARY utility to create a SYSTEM.PASCAL, you
must be sure that the segments KERNEL and
USERPROG remain in slots 0 and 15, respectively.
It is a good idea to first move REALOPS over to a
slot greater than 15. After that, move all of
SYSTEM.PASCAL over to the new file.

Here is a step-by-step process that you may follow
if you are unfamiliar with the Library utility:

1. Make sure that you have a disk with enough
free space (approximately 120 contiguous blocks)
to contain the new SYSTEM.PASCAL. You
should be sure that a SYSTEM.PASCAL doesn't
already exist on that disk. For this discussion,
that disk will be called "NEW_PAS:",

A-8 0100101:0AA

2.

6.

Appendix E

Locate the appropriate REALOPS code file (for
two-word or four-word reals). Place this code
file on NEW_PAS: using the filer's T(ransfer
facility., For this discussion, that file will be
referred to as "REALOPS.CODE" even though it
actually has a slightly different name (depending
upon your processor and real size).

Locate the disk which contains the LIBRARY
utility and place it in drive #5.

From the Command menu, X(ecute #5:LIBRARY.
After LIBRARY's first prompt appears on the
screen, remove the disk from #5 and place
NEW_PAS: in #5. Be sure that the system disk
is in #4.

Respond to LIBRARY's prompts like this:

Output file? NEW_PAS:SYSTEM,PASCAL <ret>
Input file? NEW_PAS:REALOPS.CODE <ret>

TYPE: 'T'

TYPE: '0 <space> 2] <space>
TYPE: 'N'

Input file? *SYSTEM.PASCAL <ret>
TYPE: 'E'

TYPE: 'Q'

TYPE: <ret>

NEW_PAS:SYSTEM.PASCAL is now configured for
the appropriate real size. Later, you should
T(ransfer this file to a bootable disk.

0100101:0AA A-9

Appendix E

After you have created the new SYSTEM.PASCAL,
the next step is to locate the PME which has the
real size that you want. You are provided with
two-word and four-word PMEs in addition to a PME
which doesn't support real numbers. You should
simply locate the appropriate PME code file for
now. Later you should use T(ransfer to move that
code file to the boot disk giving it the name
SYSTEM.INTERP. (On some systems, the PME is
given a different name, such as SYSTEM.PDP-11,
SYSTEM.IBM, and so forth).

In order to create a bootable disk which contains
the new SYSTEM.PASCAL and SYSTEM.INTERP, you
need to follow a process which is machine-specific.
Here is a general outline of the necessary steps:

1. Format a new diskette.
This involves executing the DISKFORMAT utility

as described in the manual UCSD p-System Guide
to the Use on M20.

2. Initialize the p-System directory.
You can do this using the filer's Z(ero command

(described in Chapter 2). Some disk formatter
programs do this automatically, however.

A-10 0100101:0AA

3.

Appendix E

Use Transfer to move the necessary system files
onto the new boot disk.

These files include SYSTEM.PASCAL,
SYSTEM.INTERP, and SYSTEM.MISCINFO. (Some
systems require additional files such as
SYSTEM.BIOS, SYSTEM.SBIOS, or SYSTEM.BOOT.
If this is necessary on your computer, your
machine-specific documentation should explain
it.) Usually, SYSTEM.LIBRARY is kept on the
boot disk as well.

Place the bootstrap code on the new diskette.

The bootstrap code (which is only required on
bootable disks) resides in an area of the disk
which doesn't appear in the p-System directory.
In order to place this code on a disk, you may
need to use a special utility program such as
BOOTER. Some disk formatter programs
automatically place the bootstrap on the newly
formatted diskette. A volume-to-volume
T(ransfer will copy the bootstrap code on many
computers. (If this is the case with your
computer, you can, if you wish, just T(ransfer
two blocks from a bootable disk to a new disk.
This will copy the bootstrap code without
disturbing the directory or any files that may
already reside on the new disk.) The process of
placing a bootstrap on a new disk should be
described in your machine-specifie
documentation.

0100101:0AA A-11

Appendix E

THE DEBUGGER

The debugger is described in the UCSD p-System
Program Development User Guide. It can be used as
an aid in debugging programs that you develop. In
order to use the debugger, you may have to use
the LIBRARY utility to place DEBUGGER.CODE
into SYSTEM.PASCAL. (See the “Floating Point
Packages” section, above, about using LIBRARY to
create a new SYSTEM.PASCAL))

In order to use the symbolic debugging facility, you
may also have to place the symbolic debugging unit
(usually found in PDBG.SEED.CODE) into
SYSTEM.PASCAL using LIBRARY.

The reason that the debugger isn't necessarily
placed in SYSTEM.PASCAL is that it requires extra
disk space and not all p-System users need it.

You should be aware that if you select D(ebug and
there is no debugger in your system, the p-System
will halt. It is necessary to reboot under these
circumstances.

A-12 0100101:0AA

Appendix E

EXTENDED MEMORY

Extended memory is a feature that allows the
p-System’ to run in environments of up to 128K
bytes (or more) of memory. This is accomplished
by dividing the p-System run-time environment into
two parts, each of which may occupy as much as
64K bytes of memory. (On many computers, a RAM
disk can be used if you have more than 128K.)

The code pool is an area of memory where most
code segments are executed by the p-System. This
code includes the operating system, filer, editor,
and so on, as well as your programs. In
nonextended memory systems, the code pool shares
the same space with the rest of the p-System (for
example, the interpreter, RSP, BIOS, SBIOS, and
the p-System stack and heap). The code pool
resides between the stack and heap on nonextended
memory systems.

On extended memory systems, the code pool is
placed in a separate area of memory altogether.
Thus, the code pool may occupy an entire 64K
portion of RAM, and the rest of the p-System may
occupy another entire 64K area.

A major advantage of the extended memory feature
is the additional memory space available for
executable code to use. This means that larger
programs can be compiled and executed.

0100101:0AA A-13

Appendix E

Also, the code segments on extended memory
systems may not need to be moved or swapped as
often as those on nonextended memory systems
thereby producing significant performance
improvements.

Because there is more space for the p-System stack
and heap to grow, the chances of a stack overflow
are reduced.

The SYSTEM.MISCINFO item "HAS EXTENDED
MEMORY" must be set to true if you are using
extended memory, and false, otherwise. If HAS
EXTENDED MEMORY isn't set correctly, the
p-System won't boot.

A-14 0100101:0AA

Appendix E

BOOTING PROBLEMS

If you are having problems bootstrapping the
p-System, there are several simple mistakes that
you may have made. This section briefly covers
them,

@ You may have forgotten to place a bootstrap on
the disk. The bootstrap code doesn't appear in
the directory because it resides in an area
outside of the main p-System volume (usually in
the first two blocks of the first p-System track
on the diskette). A bootstrap is placed on the
diskette in a machine-specific manner. On some
machines the BOOTER utility is used. On
PDP-11 or LSI-11 machines, the ABOOTER
utility is used. (BOOTER and ABOOTER are
described in the Adaptable System Installation
Manual.) Other implementations use a special
utility program to copy a bootstrap onto a new
diskette (often in conjunction with disk
formatting and directory initialization).

® You may not have all the necessary system files
on the diskette. SYSTEM.PASCAL,
SYSTEM.INTERP, and SYSTEM.MISCINFO all
must be on the system disk if it is to bootstrap
successfully., (Actually, SYSTEM.INTERP may
have another name on your particular system.)
Some systems require other files on the system
disk such as SYSTEM.BIOS, SYSTEM.SBIOS, or
SYSTEM.BOOT.

0100101:0AA A-15

Appendix E

® Any of the following fields in SYSTEM.MISCINFO
may have been set incorrectly:

CODE POOL BASE

CODE POOL SIZE

HAS EXTENDED MEMORY
HAS SPOOLING

SEGMENT ALIGNMENT

If any of these are incorrectly set, the system may
not boot. You should be sure that you keep a
backup copy of any system disk which does boot
successfully (since you need to boot the p-System
in order to alter SYSTEM.MISCINFO with the
SETUP utility).

A-16 0100101:0AA

Appendix E

SCREEN DISPLAY PROBLEMS

If your screen doesn't display information correctly,
there are two likely problems:

® SYSTEM.MISCINFO is incorrectly configured for
your console. In the section on SETUP (in
Chapter 5) several sample terminal setups are
given. Any of the SYSTEM.MISCINFO items
shown there may adversely affect the screen
display if they are set incorrectly for your
hardware. Note that the four
SYSTEM.MISCINFO items which begin with
"ERASE" may be especially troublesome if set
incorrectly. If these "ERASE" items are set to
NUL (ASCII 0), then the p-System will function
correctly (but slower than if they are set to the
correct values for your hardware). However, if
both ERASE LINE and ERASE TO END OF LINE
are set to NUL, the display won't always be
correct,

® You have an incorrect GOTOXY unit within
SYSTEM.PASCAL. GOTOXY moves the cursor
to a given "X" and "Y" coordinate on the
screen, Different terminals perform this in
different ways, so GOTOXY is
terminal-dependent.

0100101:0AA A-17

APPENDIX F
p-SYSTEM GLOSSARY

Adaptable System

Anchor

Application Program

Assembler

A variation of the p-System
that allows you to write the
low-level device interface
code which handles the
peripherals on a specific
computer. Once this
installation process is done,
the p-System can be used on
the new computer.

In the Screen-Oriented
Editor, the position of the
cursor when D(elete is
invoked. When the cursor is
moved away from this
position, text disappears.
When the cursor is moved
toward this position, text
reappears.

A computer program that
meets specific needs of a
personal computer user.
Examples include a payroll
program or an oil well
supervision program.

A program that translates

human-readable assembly
language into machine code.

0100101:0AA

Associate Time

Back File

Backup

Bad Block

Bad File

0100101:0AA

Appendix F

The time taken by the
Version IV operating system
to find and stitch together
the units referenced by a
program, This stitehing
together must occur before
the program can begin
execution.

A backup file for text files
that is identified by the
suffix .BACK; for example,
FILENAME.BACK.

The operation of making an
extra copy of important
information (usually on a
storage volume, in this
book). Also, the extra copy
that results from this
operation.

A 512-byte area on a
storage volume that is
somehow damaged. The
result is that information
can't be stored or retrieved
from there.

An immobile file used to
prevent the use of bad
blocks on a disk. A bad
file is identified by the
suffix .BAD; for example,
BAD.00120.BAD.

Appendix F

BASIC

BIOS

Bit

Block

Block-Structured
Device

Bootstrap

Boot Volume

A-20

A popular | high-level
programming language that
is supported in the

p-System.

Basic Input/Output
Subsystem; that portion of a
p—-machine emulator that is
specific to a particular
brand of computer.

The minimum unit of storage
on most computers. A bit
is either "on" or "off."

The 512-byte unit of storage
and retrieval that is used
with p-System storage
volumes,

Referred to in this book as
"Storage Volume." Earlier
p-System documentation, and
many p-System prompts and
error messages still use
"block-structured device,"” or
"bloecked device,” when
referring to storage volumes.

The action of starting (or
that piece of code which
starts) the p-System running.
You must bootstrap the
p-System before you can do
anything with it.

See "System Disk."

0100101:0AA

Bug

Byte

Chaining

Client

Code File

Code Segment

Communication
Volume

0100101:0AA

Appendix F

A defect in a program that
causes it not to operate as
intended.

A unit of computer storage.
Usually has the capacity to
store 8 bits of information,
or a number in the range 0
through 255,

See "Program Chaining."

A program or unit which
uses another unit.

A file that contains the
commpiled or assembled
version of a program or
program segment., Usually
identified by the suffix
.CODE; for example,
FILENAME.CODE.

The smallest component of a
p-System program that can
be moved into (or removed
from) main memory during
the running of the program.

A p-System I/O device that
doesn't store information on
a long-term basis; for
example, the console or the
printer.

A-2]

Appendix F

Compilation Unit

Compiled Listing

Compiler

Copy Buffer

Cursor

A-22

A unit (as represented in
any of the three p-System
languages) or a program.
The smallest module that a
language allows to be
compiled separately.

The source lines of a
program, annotated by the
compiler with details of the
results of compilation,
including sizes of
statements, sizes of data
areas, and other information.

A program that translates
the human-readable source
text of a program into
p-machine—executable

p—code.

In the editor, a storage area
in which text can be
temporarily stored after it
has been deleted from the
work-space or while it is
being copied from one place
to another in the
work-space.

An indicator that highlights
a particular point on a
display screen. In many
situations, characters typed
at the keyboard appear on
the screen at the location
of the cursor.

0100101:0AA

Data Entry Prompt

Data File

Declare

Decode

Default

0100101:0AA

Appendix F

See "Prompt."

A file that contains
arbitrary user data. No
particular internal structure
is assumed. No special file
name suffix is required, but
DATA is often used.

To establish the name and
type of an identifier used in
a computer program. Some
languages (Pascal, for
instance) require that all
identifiers be declared
before they are used.

A utility used to inspect the
contents of code files.

A state or action which will
take effect wunless an
explicit aection is taken to
choose another possibility.
For instance, in S(et
E(nvironment in the editor,
there are many options that
can be set. All of them
have default settings which
determine the operation of
the editor until they are
changed.

A-23

Appendix F

Default Disk

Delimiter

Device

Device Number

A-24

The volume where the
p-System looks for a file
unless the file specification
explicitly indicates another
volume,

A "fence" that marks the
boundaries of a sequence of
characters. In the editor,
for instance, delimiters
enclose the target string
sought by F(ind. These
delimiter characters can't be
letters or numbers, but they
can be any of the special
characters, such as "&" or

ll/".

Peripheral equipment
accessible to the p-System.
There are two varieties:
storage and communication.
Originally, and sometimes
still, a device was referred
to as a "unit." This usage
has been changed to avoid
confusion with the UCSD
Pascal language construct of
the same name.

A number used to refer to a
particular storage or -

communications volume., It

is always preceded by a
number sign (#) and
usually followed by a colon
(:). For example, #5:.

0100101:0AA

Direction Indicator

Directory

Directory Listing

Editor

EDVANCE

Execute

0100101:0AA

Appendix F

In the Secreen-Oriented
Editor or EDVANCE, the
flag at the upper-left corner
of the screen that indicates
the assumed direction for
various editor operations.

An area on a storage
volume that contains
"housekeeping"” information

. (sueh as names and

locations) about the files on
the volume.

A human-readable list,
usually on the console, of
the files on a given storage
volume, along with
miscellaneous information
about each file,

A p-System program that is
used to examine, create and
modify text files.

The Advanced Editor.
EDVANCE incorporates a
wide range of enhancements
over the pSystem
Screen-Oriented Editor.

To give control of the
p-System to a program
(usually via the X(ecute
activity).

A-25

Appendix F

Execution Error

Execution
Option String

Extended Memory

A-26

An error detected by the
p-System during the
execution of a program.
When such an error is
detected, a message Iis
produced on the console.
The message includes error
coordinates indicating the
program section that was
executing when the error
occurred. Usually the
program must be canceled
and the p-System
reinitialized.

A sequence of execution
option statements, usually
entered in response to the
X(ecute prompt. Individual
execution options can affect
a variety of aspects of
p-System operation, such as
the prefix volume, the
source of input, and so on.

A facility available on some
p-Systems that allows
programs to use up to 64K
bytes of main memory for
data, plus another 64K bytes
for program segments.

0100101:0AA

File

File Specification

File Suffix

Floating Point
Number

Format

0100101:0AA

Appendix F

A named collection of
information on a storage
volume. Also (less
frequently), a stream of
information transmitted
through a communication
volume,

A description of a source
for input or a destination
for output in the p-System.
A file specification has
three major components, all
of which are optional: the
Volume ID, the File Name,
and the Size Specification.

One of several special
endings for file names. The
file suffix usually indicates
the file type. The standard
file suffixes are .TEXT,
.CODE, .SVOL, .BACK,
.DATA, .BAD, and .FOTO.

See "Real Number."

To prepare a disk for use
with the p-System. This
involves writing addresses
and other control
information on the disk,
Any wuser information
previously stored on the disk
is destroyed by this
operation,

Appendix F

FORTRAN-77

Foto File

Fragmented

Identifier

/0

1/0 Error

A-28

A popular high level
programming language
supported in the p-System.

‘A file that contains graphic

images for use Dby
Turtlegraphics. The name
of the file has the suffix
.FOTO; for example,
PICTURE.FOTO.

The condition of a p-System
storage volume when the
total unused space on it is
spread among many small
areas. The size of the
largest file that can be
stored on a fragmented
volume is the size of the
largest single area.

The name of an object in a
programming language such
as Pascal.

Input and output.

An error detected by the
p-System during an input or
output operation. For
example, a disk write will
fail if the disk has been
inappropriately removed from
its drive. An 1/O error is
one kind of execution error.

0100101:0AA

I/0 Redirection

I/0 Result

Instruction Set

Integer Number

Interpreter

KSAM

0100101:0AA

Appendix F

A feature that allows the
p-System's input to come
from some place other than
the keyboard. Also, output
for the p-System can be
sent to some place other
than the screen.

A number indicating the
success - or failure of a
p-System I/O operation. If
this number is zero, the
operation was & success;
otherwise, the number
identifies the problem that
occurred during the I/0
operation.

The fundamental operations
that a microprocessor is
capable of performing.
Different kinds of
microprocessors usually have
different instruction sets.

A whole number (without a
fractional part).

See "p-machine emulator."
Keyed sequential access

method; a file management
facility available for the

p-System.

A-29

Appendix F

Library

Library Text File

Library Utility

Linker

Long Integer

Marker

A-30

A code file that contains
one or more units which can
be used by programs or
other units.

A text file containing a list
of library file names. When
a program is invoked, the
libraries listed in the
current library text file are
searched for any units
needed by the program.

The pSystem library
management facility. It is
used to inspect, modify, and
create libraries and other
code files.

A p-System program that
combines assembled code
files with each other or
with a compiled code file.
Also called a "link editor."

A language feature of UCSD
Pascal that supports integer
arithmetic with up to 36
decimal digits of precision.

A named, invisible flag on a

particular location within a
text file.

0100101:0AA

Appendix F

Menu A list of available aectivities
that is displayed on the
screen by the operating
system and many p-System
programs. An activity can
be selected from a menu
with a single keystroke.

Microprocessor A miniaturized computer.
Provides the computational
power for most personal
computers. Executes the
instructions of the software
running in the personal
computer.

Module A component of some larger
structure with the attribute
that it can be handled
separately from the rest of
the structure in some sense.
A UCSD Pascal unit is a
module of a program.

Mount To cause a subsidiary
volume to be accessible to
the p-System.

Multitasking The execution of two or
more tasks concurrently
within a single UCSD Pascal
program.

Native Code Machine level code that is
produced by the native code
generator as the translation
of a section of p-code.

0100101:0AA A-31

Appendix F

Native Code
Generator

n~-code

Nonblock-Structured
Device

Object Code

On-Line

A-32

A program that translates
poriions of an executable
p—code file into native code.
The resulting code file
always contains a
combination of p-code and
n-code.

See "Native Code."

Referred to in this book as
"Communication Volume."
Earlier pSystem
documentation, and many
p-System prompts and error
messages still use
"nonblock-structured device,"
or "unblocked device," when
referring to communication
volumes.

The machinereadable
representation of a computer
program,

The status of a volume
when the p-System can
access it, For a storage
volume to be on-line, the
disk must be in the
appropriate drive. For a
communications volume to be
on-line, the 1/0 device must
be properly connected and
turned on.

0100101:0AA

Pascal

p—code

p-machine

p-machine
emulator

PME

0100101:0AA

Appendix F

A widely used high level
language. UCSD Pascal, an
extended version of this
language, is the principal
programming language in the
p-System.

Psuedo-code: p-machine
code generated by the
p-System compilers and
executed by the p-machine
emulators.

An idealized
pseudo-computer optimized
for high-level language
execution on small host
machines; the foundation of
the p-System's portability.

The part of the p-System
that allows a host
microcomputer to imitate
the operation of the
p-machine. It is
implemented in the assembly
language of the host
computer.

See "p-machine emulator."

A-33

Appendix F

Portability

Prefix Disk

Print Spooler

Procedure

Program

Program Chaining

A-34

The ability to move
executable code between

dissimilar microcomputers
without recompilation or
other change. This is
possible in the p-System
because programs are
compiled into p-code that
can be executed on any
computer on whieh the
p-System has been installed.

See "Default Disk."

A facility for printing text
files concurrently with other
activities in the p-System
(particularly text editing).

A named subprogram that
handles part of the job of a
larger program or unit.

A set of detailed
instructions that direct a
computer in the performance
of a specific task. Also,
the process of creating such
a set of instructions.

Causing the automatic

execution of one program
from another program.

0100101:0AA

Prompt

p-System

RAM

RAM Disk

Real Number

Reboot

Redirect

Root Volume

0100101:0AA

Appendix F

A request (by a p-System
program) for information
from the p-System user; the
user is expected to enter
the information at the
keyboard, followed by
<{return>.

A portable microcomputer
software environment for
execution and development
of applications programs.

Random Access Memory. A
computer's main memory.

A logical storage volume
maintained in main memory.
It can generally be used for
the same purposes as a
conventional disk volume
(including storage of files),
but the information it
contains is usually lost when
the computer is turned off.

A number that can have a
fractional part, such as
"5.67982",

To start up the p-System
again. To "rebootstrap.”

See "I/O Redirection.”

See "System Disk."

A-35

Appendix F

Run-time Software

Screen-Oriented
Editor

Seript File

Segment

Source Text

Special Character

A-36

p-System software that is
needed to run programs.

The principal text editing

‘tool of the p-System. It is

optimized for use with
display consoles, rather than
printing consoles.

A file containing characters
representing the keystrokes
that you would type during
a session with the p-System.
When p-System input is
redirected to this secript
file, those keystrokes are
read as if they were coming
from the keyboard, and the
session is recreated.

See "Code Segment."

The human-readable form of
a computer program. (Also
referred to as T"source
code.") ’

A visible character that
isn't a number (0 through 9)
and not a letter (A through
Z). Examples of special
characters include "#", "/M,
"("’ and "@".

0100101:0AA

Special Key

Storage Volume

Subsidiary Volume

Substitute String

.SVOL File

0100101:0AA

Appendix F

A keyboard key that has a
particular meaning to the
p-System other than
representing an ordinary
visible character. Example:
the <return> key.

An input/output device that
can store information
written to it, for retrieval
at a later time. Usually
some sort of a disk, but can
be an area of main memory,
as well. (See "RAM Disk.")

A file on a storage volume
that contains its own volume
structure with a directory
and files. This subsidiary
volume becomes accessible
to the p-System when it is
"mounted.” The subsidiary
volume facility of p-System
Version IV.1 supports a
two-level file heirarchy.

The character pattern that
is to take the place of
instances of the target
string which are found by
the R(eplace activity in the
Screen-Oriented Editor.

A file identified by the
suffix .SVOL that contains a
subsidiary volume; for
example, NAME.SVOL.

A-37

Appendix F

Syntax

Syntax Error

System Disk

System Files

~ Target String

Text File

A-38

The rules governing the
structure of a program
written in a computer
programming language.

A place in a computer
program where the rules of
the programming language
are violated.

The disk from which the
p-System was bootstrapped.
It contuins the operating
system software. Also
known as '"root" or "boot"
disk. All three of these
adjectives also occur with
"volume" instead of "disk."

The disk files which contain
the main components of the
p-System,

The character pattern
sought by the F(ind and
R(eplace activities in the
Screen-Oriented Editor.

A file that contains
user-readable information (as
opposed to machine code);
usually identified by one of
the suffixes .TEXT or
.BACK.

0100101:0AA

Turtlegraphics

Type Ahead

UCSD

UCSD Pascal

UCSD. Pascal System

Unblocked Volume

Unit

0100101:0AA

Appendix F

A package of routines that
creates and manipulates
images on a graphic display.

A capability of a p-System
implementation to store
keystrokes that are typed
before the p-System is ready
to process them.

University of California at
San Diego. Site of the
original development work
on the p-System.

A programming language, an
extended version of the
language Pascal.

The original name of the
p-System.

See "Nonblock-Structured
Volume,"

A package of routines and
associated data structures
written in a p-System
programming language
(usually UCSD Pascal). The
facilities implemented by the
unit (or a subset of them)
can be used by programs or
by other units.

A-39

Appendix F

Universal Medium

Utilities

Volume

Volume ID

Wild Cards

A-40

A 5-1/4" diskette format
that is accessible to many
types of small computers.
It facilitates the distribution
of p-System based personal
computer application
programs.

Programs that assist in
various areas of p-System
use such as developing
programs, maintaining files,
printing files, and so forth.

A logical entity representing
a p-System peripheral
device. There are two
categories of volumes:
storage volumes (such as a
disk) and communicaton
volumes (such as the console
or the printer).

Short for "Volume
Identifier." The designation
of a particular volume; for
instance, its name or device
number.

Special symbols in file
names that allow a group of
files to be represented by a
single file name.

0100101:0AA

Window

Work File

Work-Space

0100101:0AA

Appendix F

In the Screen-Oriented
Editor, the portion of the
display screen that is used
to show a section of the
work-space being edited.

Special file(s) that are
automatically processed by
major p-System components,
including the editors and
compilers. This automatic
handling is particularly
convenient during the
development of small
programs.

Text kept in main memory
by a p-System Editor during
the editing process. Also
called the "buffer."

A-41]

Appendix F

Write-Protect

XenoFile

YALOE

A-42

Mark a storage volume in
some way so that an error
is reported if the p-System
attempts to write
information onto the volume.
(Reading is allowed, but
writing isn't.) Used to
protect valuable data from
accidental erasure. The
physical mechanism used to
signal write-protection of a
volume varies with the
storage medium used. For
instance, 5-1/4" diskettes
have a different convention
than 8" diskettes. Check
the documentation for your
computer to find out how to
write-protect the media that
you use.

A utility package that
allows you to access disks
that contain data formatted
for the CP/M operating
system.

Yet Another Line-Oriented
Editor; the p-System editor
used with printing terminals
rather than with display
terminals.

0100101:0AA

INDEX

#4.0..o.o.n-.u...nocnoo..o-co3-10
#50.1o-.olcoloucll.ucoooluol.3-10

*oooo..lcoocncoccononcou 3-10’ 3-16

:..'l..l..l...l‘...‘....‘.ll.3_10

?. © ¢ o 6 o o 2 o e o o o 8 0 8 e 0 0 s 0 s 3-20, 3-22

A(bOl‘t... e o o o o o e ® 8 e e @ o o 8 ° e e o e o5-53
aSteriSk................... 3-10, 3-16

0100101:0IA I-1

L T Rt me. . T

Index

B A e e o e R e fal oo on o o o7 el s alaeina 12 2=
BREKSPACEI G & ot o s cioie oo bie s lhsits omra=04
D S R oy e i s = L LR oy I
blaek-struetureds « ¢ ste.c s a'c ¢ « & s o sieie 3-L3
booting probleM8. « v e c c e e s oo s vrwsee A-1S

- =

CHAEN . . « o . e ety o (ol e Mag P o D O 8
EUBE . s s v s dts o vs nnesses vas 37kt 3~k
code fileS. « e e et e e e e eeeeeees. 2-6, 3-14
CODE POOL BASE[FIRST WORD]........564
CODE POOL BASE[SECOND WORD]...... 564
CODE POOEESIZE., o« o « s o6 ¢ oo s w60
CO LGNy A T S Pet o oy eitas el 20 o et hel s ot ot it =3—=11(}
COMMANA NMERN B i o o o s & o o o opele o s o 2=4
communication device. « « « « ¢ e ¢ ¢ ¢ ¢ s o 3-15
C(omp-unit. e b e RO
COPYDUPDIR . « ¢« voov v a6 o o0« =008, =92
CHUESOD Y s ol o slianeie vhociiolial ciel o1t el s o el ol at o = =4

-D-

data files. Bty GRG0 GG DG o OO Bl e
e DU EFOID R shelletelts ts) st ol 1o 's-Feiiai’e, '¢iisl s olrat eiisiier & A=—TED
(3T R R SR SR R -
defiault (diSlcl oot e i silalamiel st comatt orist ar o1 srian or-etd= 10
device DURMDETS.: v s o s v e s s i o o £us s vos 3D
GEVICES . s ¢ s s s sn s s s cnassoedll, 315
UEBCEOPY . s oo o v o a vo wivh e s s o s 39 3=30
Oisk SWaPDIAgs « « s s c o s s 0600 v ns s one 2=8
duplicate direcloryY. « « o« o » s o+ o » « « 3=30, 592

I-2 0100101:01IA

Index

.

Bt s o o o ¢ « v 2 RS Rk o 4 & & atn u i # ae BE
editing. « « e s s s s st s s evesossvsssne 1-8
e e,
EDITOR ACCEPT-KEY ¢ s s 000005 smosied=ib
EDITOR EBSCAPE EEBY. « c ¢ ¢ 0 o ¢c 059 s 567
EDITOR EXCHANGE-DELETE KEY....... 567
EDITOR EXCHANGE-INSERT KEY....... 567
EDVANCE. ¢ ¢ s c s e s ssocesesssoscscsedl
ERASE LINE. . ccccceccoecccccscsese 967
ERASE SCREEN. . . ¢ co0eceecsesse 67
ERASE TO END OF LINE. ¢ ¢ ¢ ¢ e ¢ ¢ 000 +9-68
ERASE TO END OF SCREEN. ¢« ¢ ¢ ¢ ¢ s+ 4. 968
T R S I e e e
EXCEPTION. ¢ ¢ ¢ s e s s s e s osaocoessas 2-28
execution option strings.« e ... 2-26
extended MEMOrY.: ¢ ¢ s s s s e o s s us o ses A-14

- =

£ 1 R S D R e . T e
file DondlIng . . « « v + o w90, w o siunve 10y =5
file DBOMEB. ¢ « o o ¢ 6020 0ss 00000 sisinss 30
File o Name' SULLIXES .cueiies oo eisiio s wohe; enasdmlid
File Name Syntax. .« s s o cvsewawonsw o8
F(ilePe o o o e oo osooeees 1-3, 3-5, 3-44—3-101
Bad " BISeRE . 3 o sisw i 5 & wamuisin e s« o0 0
CHRBRE, & v s s 050 o stoisséssn S=ET
DLAEG. %5 c s 0 s s s s amoson anossss 350
Bigtended List. oo diernv s oas o ama sand gl
F(lip Swap/Lock. R ST =
Glet. e oo eeeeoeoeoaaonsoes 3-19, 3-58
BAPUBOD: ¢ s « « o5 e ncts oo st 0low s s & S0
L(ist Directory. « « e e e e coc oo eooe. 3-63
MUERE . «'s s 000 s a G s 005 vnbnmssass =08

0100101:0IA I-3

Index

BICEW . o v ocs win o 5% © & sibials a1 - 3~T0
O(N/off-lin€. « « ¢ ¢ v o e v oo eeeeeesed-Tl
PUBTIN. o ¢ o 0 o0 ¢ willns baowseslse 3=T4
BUBEY . o v cos v & 505 ¢ b Freh sl su ¢ 15
RlemMoves i 5w & v s Je b2 38 a ad% &5 ur 3-77
WMAVE ¢ s 35 55 6 s 3Lt o b b 3-19, 3-80
PO ANSLIOr o 50 v o AR ks P n v o R
WOMAMEBB - - 5 s 5 5 5+ S5 W56 04 v otis’s Siary 990
WOME 2y s v s o 5 S TR h 3-19, 3-95
RN . n s ss s s 5 n v bee Ranys o 3-98
FhOPO . v s s 670'e 50 8 652 s n0e s ds s sh s 83°99
EREr “MERMUSTe o= 6 s s oo of ol o ime B o s loFallat o s o S =A0
5 ORISR T
EIMS: ch ot e Bk o i o e st el s ol e alite | uif =G5
FIRST SUBSIDIARY VOL NUMBER....... 5-68
floating point packages.+ ¢ e s +... A6
FOTO . L ore o v 's ms 6% % e e i B=10" BT
TOUL=WOLd " PEBIS 7. 4 ¢ o.a s /s w's lerisie sin o 0. o A=B

-H-

HAS 8510A....cccccoccovcsceescs 9-69
HAS BYTE FLIPPED MACHINE......... 5-69
HAS CLOCK. .::cc¢ccccccecoccccsess 90-69
HAS EXTENDED MEMORY. .. ¢ oo oo« +970
HAS LOWER CASE...¢cccccesecses 9=70
HAS RANDOM CURSOR ADDRESSING..... 570
HAS SLOW TERMINAL. . . . c . c c ¢ e s s s « 5T0
HAS SPOOLING. . ¢ s coscsccosososs 971
HAS WORD ORIENTED MACHINE........5T1

-I-
I(nputooit.oc..nocn.ooo.n-ocooo5-55

I-4 0100101:0IA

Index
= K —5

KEYBOARD INPUT MASK. . ¢ ¢ ¢ e oo oo 5-71
KEY FOR BREAK..::cccceeeeeees 971
KEY FOR FLUSH. ¢ ¢ ¢ cccoceoocooees T2
KEY FOR STOP. :c¢:cccococcocoscseedT2
KEY TO ALPHA LOCK. ¢:cccoceooeee 972
KEY TO DELETE CHARACTER....¢.. ... 5-73
KEY TO DELETE LINE. ... cc¢ceceeee 973
KEY TO END FILE, s c e s 6 e s sc0cees 573
KEY TO MOVE CURSOR DOWN........ 574
KEY TO MOVE CURSOR LEFT......... 574
KEY TO MOVE CURSOR RIGHT........ 574
KEY TO MOVE CURSOR UP...¢¢:cc0.. 5-74

.

LEAD IN FROM KEYBOARD. ...4::.... 5-74
LEAD IN TO SCREEN. . ccccevsc00ssqe97H
HORBEY .o lohn's s s viss s is s ssvsonwse 228
LADrary’s menl. . « « s s s s s s s ossssos s 303
Libracy "Dtsllty: ¢ . s detmebesee 9=50
POBESRIRIRN . © T8 L i s e i ss st irma s wmane OSRT

-M-
M(akecou-ooo-to-o-ou oooooooo 003-27
MARKDUPDIR . « « s ¢'¢ o' ape o ol isliehe NO=3TENG=03
MAX NUMBER OF SUBSIDIARY VOLS..... S5=75
MAX NUMBER OF USER SERIAL VOLS. ... 5-76
MENUSE S/ s e o0 a s aletels o aaiotoie ol Talis el o1 e 2-3

MOVE CURSOR HOME. . . ¢ cc e o oo eeee =77
MOVE CURSOR RIGHT. e ® o s o s 8 0 e e 8 s e 5_77
MOVE CURSOR UP- @ & 8 8 9 e 0 8 s 0 s 8 s 0 5_78

S
N(ew. LI R T I B DN D R I D D D D I D L I I e 5-53

0100101:0IA I-5

Index

nonblock-structured device. . « « ¢ ¢ ¢« ¢ s o « « 3-15
NONPRINTING CHARACTER. ¢« ¢ ¢ ¢« ¢ ¢ ¢ « « 95-78

-0 -

iy i [RN Loy NS T R g L TR ¢
operating SySteMl. . . c v o s v s s vsdanses 2=3
Operating System Commands. 2-9
BASHEBIE . v o ¢ & o' obar s ute o la la bl e ot SFED
ElOMBIE s « « « o sloin s vise s odeeeoa L3
D(ebug....... o alh s ate s Bie v LTEENE
BLOIE: e 7V 5 n OB alel e 3 Wy SR
PLEIN,. & 1T i ela's s 550 o o & 50 R v i =10
MM o s c vl v in s ws s s am s e smn ok
Knitiolize, . o v dd s n i sas s o ne s it I
RO, 5 civu v en b wnid o wivie ofs & @ wimiaBily
BIORIBOE s o o % 6 65 55 55 o s v. 60wl o5 v Ol
L e e TR W,)
BBERr RAStart. v s o o + o o o0 s o nlnis e 428
XIECULE s s» s oo s 55 o s o0 agibsissteios
OUEDUE o s o » o9 5. 6's o o «'e 5 08 Fd e toalae DERD

-

BRREH « o o oo a5 60 0@ 5[0 sssmea s s adiintl
PREHIRVEE S o leh 51 o e oihe aiiatear s Tt v o e oL Gl e la e A0k
PREFIXED[item nameJ. . « « ¢ ¢ ¢ ¢« ¢ ¢ o s« 5-78
PERINT. : o alalis vigson sn s s o e uiss oa 0
PRINTABLE, CHARACTERS . o o « s 55 0 o o0 918
Program CINPUE e Shieie o o ot's o0 o ST tere BA=29
PROgram outpUt.’ &' & o) s et ni e o fefslistie Taite 229
BEONIPUS,. oo c's oo o) oifabirer shalleic o fsfeoltalaie ol L2 D

Q
Q(uit-oc00000-0000-0000000.2-5, 5-53

I-6 0100101:0IA

Index

-

REAL CONYERT, s.2 05 ¢« o «s.06 nisie o w o =87
reall "humber SiZetisiiint s s o c:oissoinisis s tsis A—D
RECOVER. . « c s 0658 052 00 anss 3280, S=08
Recovering Lost FileS. « « ¢« ¢ ¢ ¢ ¢ o 00 0 o« 3-27
BEDIBIETE 44 65 ¢ o a0 0.8 0.0 0 ¢ 84 o ssranisas
FedIFeCHIONe s o e ¢ o o = shai's s s s o=20, MI=SREI= 4
MBI .« o i 6 60 om B o ale sieleRith o it DR S

-S -

scrateh input buffers. « v« v'cos s« 228, 2-32
sereen-oriented editor. « v « e v v s s v s s s s 43
BRBINBES o'y e o o0 o0 sle an 0 b om B e niss 20
auto-indent. « « « « s ¢ o ¢ o o o o'¢ o §=38, 4-47
command character. 4-39, 4-48
CONEROIN SkeVSs - o o it Bl Gt oichs s s = o s o 48
7 P e R
o T o ST R e)
CUBSDRIF: . o el 'ol e lojin: s o Loy slie e iolia iells iut oie HA=8
DHRIRtR. s « o's c s o w005 a0 o5 10 428
direction “inAicator e s o5« sl o oo ae s 2=8
€qUAlS. . . ¢ c cc e e e e ssssssssss 4-9
PEDIRE o i o'ai6 6 5006 0 0 o0 s s 6w B Bas RN
F(ind. « « « « ¢ ¢ 000 0ove.e.ed4-13, 4-28, 4-34
globalls diFections JFaie o o« s ool sie it o 4=8
HABEEE . s o o' alein s w e st n =B d=01
¥ P P s s sdw s 9, 4=38
BOMMMA: ¢ ¢ + s s s 6o s v sudents o A=38
T SR R L |
IBREANSe "y fo.'v o) % ls loiis s ‘o) el iiatie e slie torlo Ml s =48
IANKELEL 53 % 5 515 a1, 5 s el s ol talior s i S54=3'5
MAPKEPS . o ¢ ¢ 5.6 s ds d9 509 on o $=24S 4-50
MOVIRE the CUrsoP . i oo s e s s svoss 4~10
PBES v 5 < 's 5 s o5 b5 5a s anoadhraydsll

0100101:0IA 2]

Index

(21777 | <SR PRl St R ok P e - § |
EePERE SPaCtonSEY, [0 sfoteis shetaione i alor e nd T
R(eplace. « v v v e v e v v v oo eeaad-13, 4-43
Sleb. o via s b dm i d BRENC0w s v« 1-48
S(et E(nvironment. 4-6, 4-31, 4-46
St MAPKBE: o ¢ o ¢0 s o va4'd 0 a'o e =00
special keys. . c s s escessssssses s 88
LA STOPSHL o &l olie- o o' o o 'on e o sliatewe o000 S =40
LOKETISls! o Shal v ofa-oiie o & & WAl o= e a5 e A=)
VBN . o « s 5« s oids a0 kvnenpoas 303
WOPK - THEe . s e e s vns sas s wrsmes os o L0
XUCHANEE, ¢ ¢ < o s sctsnboososiloss s i DS
TRt 2 i e xRl o e o il ety A
screen display problems. A-17
SCREER -BEIGHT. ¢ « o « ¢ w00 v ikios s o5 9=
SCREEB WHITH . . ¢ o ¢« s som ssivs s iomogh
SEGMENT ALIGNMENT. aisales =810
SEOMERTST. ‘o o/ 1onle o' lol sreks o o & sis < apeliaectonol o, 35010
L e S R NG S ST RS .
separate compilations. « « « « « ¢ ¢ e ¢ e e ... 550
Serlal v deVICeSii i ool e s ole o o loNsmetio =03
BRBETUR . Coiai o oo bnm e e inge s sodal. O-00
storage deviCe., . « v s e s 6 s s s ¢ ¢ s 0 #3738, 3-15
BRUDENTS o o oot o 0000 w0 o sk s 50 ks s 900
subsidiary volumes. 3-10, 3-33, 5-61
BHOLE . ¢« s dolv o5 o dessvees il 18, 03-34
SystemiadiSk e o -liie « o ors B o o B e e L1
system MHe8. aie » o s s 005 5 4 4 ¢« s o d=12=5~56
SYSTEM.ASSMBLER. .. .« ¢« ... 1-13, 2-10
SYSTEM.COMPILER . . . « o « -~ . 113, 2-12
SYSTEM.EDIEQR', . s ¢ « s o o s 1-13, 2-15, 4-3
SYSTEMFIEER . . ;i vs vo s wuws 654 ¢ 2-16
SEYSTEMINTERE., oo i s s 5.0 oo mmidedeld
SYSTEMLIBRARY . ¢ « ¢ ¢ ¢ ¢ ¢ o « » 1714, 2-28
SYSTEMILINKER., . o0 0 0 06 960 s enns 219
SYSTBMAST . TEXT. . o « o 4 54 056 aws3~18
SYSTEMMENW. , . v v 50 v0ev4.s ssss 1-14
SYSTEM.MISCINFO........ 1-12, 4-3, 5-56

I-8 0100101:0IA

Index

SYSTEM.PASCAL: ¢ ¢ e e s e s e 0 ce 00 el1-12
SYSTEM.STARTUP . « « ¢ ¢ ¢ o ¢ s« o 1-14, 2-18
SYSTEMSYNTAX.: ¢ c ¢ ¢ 006604113, 2-13
SYSTEM.WRK.CODE.......2-10, 2-12, 3-18
SYSTEM.WRK.TEXT. ... 2-10, 2-12, 3-18, 4-41
EYELEN J0PUL. c c s s s v n v s s e n b e s ese 2¥30

SYStEm oUIPUL . « o o ¢ s v a oo s o o . oo aren i 2=30
=P =
'TEXT. . . . - - 3-12’ 3-13
text fileSQ ® ® @ ® 9 9 8 8 e 8 e e e 2'6, 2-1 5, 3-13
T(Og ooooo v o -0 S b arinr e & e & & o & & 8 & o @ 5—53
tWo-WoPd: Taal8ii o « s 54 ¢e o o reteliats eses A-6
= U -
RINTEUPASEATIO . o o o als ohei e ol o ss e o o e 00
user-defined serial devices. 3-10, 5-61
user libl‘&l‘y. ® 9 ® 8 9 8 8 8 e 4 e 8 e 8 e 8 e 8 e . 2-28
USERLIBIMEXT. ; « ¢ o vee o6 o el aw el A=
using ILIBPAPY .« « s v o0 e s s s 008088 6000 5-51
R 1 e o TR S SN R, Tair 3 S S N P 5-3
i~
VERTICAL MOVE DELAY s o o o sisisie e e 5-81
volume ID. @ % @ @ 8 8 8 " " 8 e e 8 e e e o o o o 3_5
Volume ID Synt@X. ... ¢ cecooceoeeeeeese 3-7
NOLUME N NAMIC o o s s s e aivsl s sileifarie lo sl e @ » o lei o 3-5
volume DUMDEPLS.e s o o 50 o o o o560 5 s o5 e 3-10
VOIUDIESIcE e ans o s e o (s she o ois e = o o 3=10, 3-15
w

wild Cards.oulnooo.cnl.locttu.o3—22

0100101:0IA I-9

Index

window..-o0001100000000000000004-4

WOPK 11l€. o « o cis s o8 win.wie ¢ 2=02, 1 E-18; : 3~58
WRITEEN. <& ¢ « =51

-Y-
YALOE-...-.-...oo.noloccno.--c4-3

I-10 0100101:0IA

ALl

e

Code 3986630 L (0)
Printed in ltaly

Code 3986630 L (0)
Printed in Italy

